

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Vumi 0.5.34 documentation

Welcome to Vumi’s documentation!

Contents:

	Vumi Overview

	Vumi Tutorial

	Forwarding SMSs from an SMPP bind to a URL

	Applications

	Transports

	Dispatchers

	Middleware

	Metrics

	Vumi Roadmap

	Release Notes

Note

Looking for documentation for writing Javascript applications for the
hosted Vumi Go environment? Visit http://vumi-go.readthedocs.org for
documentation on the hosted platform and
http://vumi-jssandbox-toolkit.readthedocs.org for documentation on
the Javascript sandbox.

Getting Started:

	Installing Vumi with VirtualBox and Vagrant

	First steps with Vumi

	Writing your first Vumi app - Part 1 | Part 2

	ScaleConf workshop instructions

For developers:

	Routing Naming Conventions

	How we do releases

	Coding Guidelines

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

Vumi Overview

[image: \tikzstyle{place}=[double copy shadow, shape=rounded rectangle, thick, inner sep=0pt, outer sep=0.5ex, minimum height=2em, minimum width=10em, node distance=10em,]; \tikzstyle{rabbit}=[->, >=stealth, line width=0.2ex, auto,]; \tikzstyle{route}=[sloped,midway,above=0.1em]; \tikzstyle{outbound}=[draw=black!50] \tikzstyle{inbound}=[draw=black] \tikzstyle{failure}=[draw=black, decorate, decoration={snake,pre length=1mm,post length=1mm}] \definecolor{darkred}{rgb}{0.5,0,0} \definecolor{darkgreen}{rgb}{0,0.5,0} \definecolor{darkblue}{rgb}{0,0,0.5} \node[place,draw=darkred!50,fill=darkred!20] (failure_worker) {Failure Workers}; \node[place,draw=darkblue!50,fill=darkblue!20] (transport) [below=of failure_worker] {Transports}; \node[place,draw=darkgreen!50,fill=darkgreen!20] (app_worker) [right=of transport] {Application Workers}; \draw[rabbit,inbound] (transport) to node [route] {inbound} (app_worker); \draw[rabbit,inbound,bend right] (transport) to node [route] {event} (app_worker); \draw[rabbit,outbound,bend right] (app_worker) to node [route] {outbound} (transport); \draw[rabbit,failure,bend right] (transport) to node [route] {failure} (failure_worker); \draw[rabbit,outbound,bend right] (failure_worker) to node [route] {outbound} (transport);]

A simple Vumi worker setup

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

Vumi Tutorial

New to Vumi? Well, you came to the right place: read this material to quickly get up and running.

	Writing your first Vumi app - Part 1

	Writing your first Vumi app - Part 2

	ScaleConf Workshop - General Introduction

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Vumi Tutorial

Writing your first Vumi app - Part 1

This is the first part in a series of tutorials demonstrating how to develop Vumi apps.

We’ll assume you have a working knowledge of Python [https://python.org/], RabbitMQ [https://www.rabbitmq.com/] and VirtualEnv [https://pypi.python.org/pypi/virtualenv].

Where to get help

If you’re having trouble at any point feel free to drop by #vumi on irc.freenode.net to chat with other Vumi users who might be able to help.

In this part of the tutorial we’ll be creating and testing a simple working environment.

Environment Setup

Before we proceed let’s create an isolated working environment using VirtualEnv [https://pypi.python.org/pypi/virtualenv].

From the command line cd into a directory where you’d like to store your code then run the following command:

$ virtualenv --no-site-packages ve

This will create a ve directory where any libraries you install will go, thus isolating your environment.
Once the virtual environment has been created activate it by running source ve/bin/activate.

Note

For this to work VirtualEnv [https://pypi.python.org/pypi/virtualenv] needs to be installed. You can tell it’s installed by executing virtualenv from the command line. If that command runs successfully with no errors VirtualEnv [https://pypi.python.org/pypi/virtualenv] is installed. If not you can install it by executing sudo pip install virtualenv from the command line.

Note

From this point onwards your virtual environment should always be active. The virtualenv is activated by running source ve/bin/activate.

Now that you created and activated the virtual environment install Vumi with the following command:

$ pip install -e git+git://github.com/praekelt/vumi.git@develop#egg=vumi

Note

This will install the development version of Vumi containing the latest-and-greatest features. Although the development branch is kept stable it is not recommended for production environments.

If this is your first Vumi application you need to take care of some initial RabbitMQ [https://www.rabbitmq.com/] setup. Namely you need to add a vumi user and a develop virtual host and grant the required permissions. Vumi includes a script to do this for you which you can execute with the following command:

$ sudo ./ve/src/vumi/utils/rabbitmq.setup.sh

Note

Vumi workers communicate over RabbitMQ [https://www.rabbitmq.com/] and requires it being installed and running. You can tell it’s installed and its current status by executing sudo rabbitmq-server from the command line. If the command is not found you can install RabbitMQ by executing sudo apt-get install rabbitmq-server from the command line (assuming you are on a Debian based distribution).

Testing the Environment

Let’s verify this worked. As a test you can create a Telnet worker and an echo application, both of which are included in Vumi.

Philosophy

A complete Vumi instance consists of a transport worker and an application worker which are managed as separate processes. A transport worker is responsible for sending messages to and receiving messages from some communications medium. An application worker processes messages received from a transport worker and generates replies.

Start the Telnet transport worker by executing the following command:

$ twistd -n --pidfile=transportworker.pid vumi_worker --worker-class vumi.transports.telnet.TelnetServerTransport --set-option=transport_name:telnet --set-option=telnet_port:9010

This utilizes Twisted [https://twistedmatrix.com/trac/] to start a Telnet process listening on port 9010. Specifically it uses Vumi’s builtin TelnetServerTransport to handle communication with Telnet clients. Note that we specify telnet as the transport name when providing --set-option=transport_name:telnet. When starting the application worker as described next the same name should be used, thus connecting the transport worker with the application worker.

Philosophy

A transport worker is responsible for sending messages over and receiving messages from some communication medium. For this example we are using a very simple transport that communicates over Telnet. Other transport mechanisms Vumi supports include SMPP, XMPP, Twitter, IRC, HTTP and a variety of mobile network aggregator specific messaging protocols. In subsequent parts of this tutorial we’ll be using the XMPP transport to communicate over Google Talk.

In a command line session you should now be able to connect to the transport worker via Telnet:

$ telnet localhost 9010

If you keep an eye on the transport worker’s output you should see the following as clients connect:

2012-03-06 12:06:32+0200 [twisted.internet.protocol.ServerFactory] Registering client connected from '127.0.0.1:57995'

Note

At this point only the transport worker is running so Telnet input will not be processed yet. To process the input and generate an echo we need to start the application worker.

In a new command line session start the echo application worker by executing the following command:

$ twistd -n --pidfile=applicationworker.pid vumi_worker --worker-class vumi.demos.words.EchoWorker --set-option=transport_name:telnet

This utilizes Twisted [https://twistedmatrix.com/trac/] to start a Vumi EchoWorker process connected to the previously created Telnet transport worker.

Philosophy

An application worker is responsible for processing messages received from a transport worker and generating replies - it holds the application logic. For this example we are using an echo worker that will simply echo messages it receives back to the transport worker. In subsequent parts of this tutorial we’ll be utilizing A.I. to generate seemingly intelligent replies.

Now if you enter something in your previously created Telnet session you should immediately receive an echo. The application worker’s output should reflect the activity, for example when entering hallo world:

2012-03-06 12:10:39+0200 [WorkerAMQClient,client] User message: hallo world

That concludes part 1 of this tutorial. In part 2 we’ll be creating a Google Talk [https://www.google.com/talk/] chat bot.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Vumi Tutorial

Writing your first Vumi app - Part 2

This is the second part in a series of tutorials demonstrating how to develop Vumi apps.

If you haven’t done so already you might want to work through part 1 of this tutorial before proceeding.

In this part of the tutorial we’ll be creating a simple chat bot communicating over Google Talk [https://www.google.com/talk/].

More specifically we’ll be utilizing Vumi’s XMPP transport worker to log into a Google Talk [https://www.google.com/talk/] account and listen for incoming chat messages. When messages are received an Alice Bot [http://www.alicebot.org/] based application worker will determine an appropriate response based on the incoming message. The XMPP transport worker will then send the response. For another Google Talk [https://www.google.com/talk/] user chatting with the Vumi connected account it should appear as if she is conversing with another human being.

Note

Remember your virtual environment should be active. Activate it by running running source ve/bin/activate.

XMPP Transport Worker

Continuing from part 1 of this tutorial, instead of using the Telnet transport worker we’ll be using Vumi’s built-in XMPP transport worker to communicate over Google Talk.

In order to use the XMPP transport worker you first need to create a configuration file.

To do this, create a transport.yaml file in your current directory and edit it to look like this (replacing "username" and "password" with your specific details):

transport_name: xmpp_transport
username: "username"
password: "password"
status: Playing with Vumi.
host: talk.google.com
port: 5222

Going through that line by line:

transport_name: xmpp_transport - specifies the transport name. This identifies the transport worker for subsequent connection by application workers.

username: "username" - the Google Talk [https://www.google.com/talk/] account username to which the transport worker will connect.

password: "password" - the Google Talk [https://www.google.com/talk/] account password.

status: Playing with Vumi - causes the Google Talk [https://www.google.com/talk/] account’s chat status to change to Playing with Vumi.

host: talk.google.com - The XMPP host to connect to. Google Talk [https://www.google.com/talk/] uses talk.google.com.

port: 5222 - The XMPP port to connect to. Google Talk [https://www.google.com/talk/] uses 5222.

Note

Vumi utilizes YAML [http://yaml.org/] based configuration files to provide configuration parameters to workers, both transport and application. YAML is a human friendly data serialization standard that works quite well for specifying configurations.

Now start the XMPP transport worker with the created configuration by executing the following command:

$ twistd -n --pidfile=transportworker.pid vumi_worker --worker-class vumi.transports.xmpp.XMPPTransport --config=./transport.yaml

SASLNoAcceptableMechanism Exceptions

In the event of this command raising a twisted.words.protocols.jabber.sasl.SASLNoAcceptableMechanism exception you should upgrade your pyOpenSSL [http://pypi.python.org/pypi/pyOpenSSL] package by executing pip install --upgrade pyOpenSSL from the command line.

Note

This is different from the example in part 1 of this tutorial in that we no longer set any configuration options through the command line. Instead all configuration is contained in the specified transport.yaml config file.

This causes a Vumi XMPP transport worker to connect to the configuration specified Google Talk [https://www.google.com/talk/] account and listen for messages. You should now be able to start messaging the account from another Google Talk [https://www.google.com/talk/] account using any Google Talk [https://www.google.com/talk/] client (although no response will be generated until the application worker is instantiated).

Alice Bot Application Worker

Continuing from part 1 of this tutorial, instead of using the echo application worker we’ll be creating our own worker to generate seemingly intelligent responses.

Philosophy

Remember application workers are responsible for processing messages received from transport workers and generating replies - it holds the application logic. When developing Vumi applications you’ll mostly be implementing application workers to process messages based on your use case. For the most part you’ll be relying on Vumi’s built-in transport workers to take care of the communications medium. This enables you to forget about the hairy details of the communications medium and instead focus on the fun stuff.

Before we proceed let’s install our dependencies. We’ll be using PyAIML [http://pyaiml.sourceforge.net/] to provide our bot with knowledge. Install it by executing the following command:

$ pip install http://sourceforge.net/projects/pyaiml/files/PyAIML%20%28unstable%29/0.8.6/PyAIML-0.8.6.tar.gz

We also need a brain for our bot. Download a precompiled brain by executing the following command:

$ wget https://github.com/downloads/praekelt/public-eggs/alice.brn

Note

For the sake of simplicity we’re using an existing brain. You can however compile your own brain by downloading the free Alice AIML set [https://code.google.com/p/aiml-en-us-foundation-alice/] and learning it as described in the PyAIML examples [http://pyaiml.sourceforge.net/#examples]. Perhaps you rather want a Fake Captain Kirk [https://code.google.com/p/aiml-en-us-foundation-fakekirk/].

Now we can move on to creating the application worker. Create a workers.py file in your current directory and edit it to look like this:

import aiml
from vumi.application.base import ApplicationWorker

class AliceApplicationWorker(ApplicationWorker):

 def __init__(self, *args, **kwargs):
 self.bot = aiml.Kernel()
 self.bot.bootstrap(brainFile="alice.brn")
 return super(AliceApplicationWorker, self).__init__(*args, **kwargs)

 def consume_user_message(self, message):
 message_content = message['content']
 message_user = message.user()
 response = self.bot.respond(message_content, message_user)
 self.reply_to(message, response)

The code is straightforward. Application workers are represented by a class that subclasses vumi.application.base.ApplicationWorker. In this example the __init__ method is overridden to initialize our bot’s brain. The heart of application workers though is the consume_user_message method, which is passed messages for processing as they are received by transport workers. The message argument contains details on the received message. In this example the content of the message is retrieved from message['content'], and the Google Talk [https://www.google.com/talk/] user sending the message is determined by calling message.user(). A response is then generated for the specific user utilizing the bot by calling self.bot.respond(message_content, message_user). This response is then sent as a reply to the original message by calling self.reply_to(message, response). The transport worker then takes care of sending the response to the correct user over the communications medium.

Philosophy

The application worker has very little knowledge about and does not need to know the specifics of the communications medium. In this example we could just as easily have communicated over SMS or even Twitter without having to change the application worker’s implementation.

Now start the Alice Bot [http://www.alicebot.org/] application worker in a new command line session by executing the following command:

$ twistd -n --pidfile=applicationworker.pid vumi_worker --worker-class workers.AliceApplicationWorker --set-option=transport_name:xmpp_transport

Note

Again note how the application worker is connected to the previously defined, already running transport worker by specifying --set-option=transport_name:xmpp_transport.

Now with both the transport worker and application worker running you should be able to send a chat message to the Google Talk [https://www.google.com/talk/] account configured in transport.yaml and receive a seemingly intelligent response generated by our Alice Bot [http://www.alicebot.org/].

Coming soon

The tutorial ends here for the time being. Future installments of the tutorial
will cover:

	Advanced applications.

	Scaling and deploying.

In the meantime, you might want to check out some other docs.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Vumi Tutorial

ScaleConf Workshop - General Introduction

Note

These instructions were written for the first Vumi workshop on the 21st
of April 2013, right after the ScaleConf [http://www.scaleconf.org/] conference in Cape Town.

Spotted an error? Please feel free to contribute to the documentation [https://github.com/praekelt/vumi/].

What is Vumi?

Vumi is a scalable, multi channel messaging platform. It has been designed to
allow large scale mobile messaging in the majority world. It is actively being
developed by the Praekelt Foundation [http://www.praekeltfoundation.org/] and other contributors.
It is available as Open Source software under the BSD license.

What were the design goals?

The Praekelt Foundation [http://www.praekeltfoundation.org/] has a lot of experience building mobile messaging
campaigns in the areas such as mobile health, education and democracy.
Unfortunately, a lot of this experience comes from having built systems that
caused problems in terms of scale and/or maintenance.

Key learnings from these mistakes led to a number of guiding principles in
the design of Vumi, such as:

	The campaign application logic should be decoupled from how it
communicates with the end user.

	The campaign application and the means of communication with the end-user
should each be re-usable in a different context.

	The system should be able to scale by adding more commodity machines,
i.e. it should scale horizontally [http://en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling].

The above mentioned guiding principles resulted in a number of core concepts
that make up a Vumi application.

A Vumi Message

A Vumi Message is the means of communication inside Vumi. Esentially a Vumi
Message is just a bit of JSON [http://en.wikipedia.org/wiki/JSON] that contains information on where a message
was received from, who it was addressed to, what the message contents were
and some extra metadata to allow it to be routed from and end-user to an
application and back again.

Transports

Transports provide the communication channel to end users by integrating into
various services such as chat systems, mobile network operators or possibly
even traditional voice phone lines.

Transports are tasked with translating an inbound request into a standardized
Vumi Message and vice-versa.

A simple example would be an SMS, which when received is converted into a bit
of JSON [http://en.wikipedia.org/wiki/JSON] that looks something like this:

{
 "message_id": "message1",
 "to_addr": "1234",
 "from_addr": "27761234567",
 "content": "This is an incoming SMS!",
 "transport_name": "smpp_transport",
 "transport_type": "sms",
 "transport_metadata": {
 // this is a dictionary containing
 // transport specific data
 }
}

Applications

Applications are tasked with either generating messages to be sent to or
acting on the messages received from end users via the transports.

As a general rule the Applications should not care about which transport
the message was received from, it merely acts on the message contents and
provides a suitable reply.

A reply message looks something like this:

{
 "message_id": "message2",
 "in_reply_to": "message1",
 "to_addr": "27761234567",
 "from_addr": "1234",
 "content": "Thanks! We've received your SMS!",
 "transport_name": "smpp_transport",
 "transport_type": "sms",
 "helper_metadata": {
 // this is a dictionary containing
 // application specific data
 }
}

Dispatchers

Dispatchers are an optional means of connecting Transports and Applications.
They allow for more complicated routing between the two.

A simple scenario is an application that receives from a USSD transport but
requires the option of also replying via an SMS transport. A dispatcher would
allow one to contruct this.

Dispatchers do this by inspecting the messages exchanged between the Transport
and the Application and then deciding where it needs to go.

+----------------+
| SMS Transport |<----+ +------------+ +-------------+
+----------------+ +-->| | | |
 | Dispatcher |<-->| Application |
+----------------+ +-->| | | |
| USSD Transport |<----+ +------------+ +-------------+
+----------------+

How does it work?

All of these different components are built using the Python [http://www.python.org] programming
language using Twisted [http://www.twistedmatrix.com/], an event driven networking library.

The messages between the different components are exchanged and routed using
RabbitMQ [http://www.rabbitmq.com/] a high performance AMQP [http://en.wikipedia.org/wiki/AMQP] message broker.

For data storage Redis [http://www.redis.io/] is used for data that are generally temporary but and
may potentially be lost. Riak [http://www.basho.com/riak] is used for things that need strong
availability guarantees.

A sample use case of Redis [http://www.redis.io/] would be to store session state whereas Riak [http://www.basho.com/riak]
would be used to store all messages sent and received indefinitely.

Supervisord [http://www.supervisord.org/] is used to manage all the different processes and provide any
easy commandline tool to start and stop them.

Let’s get started!

As part of the workshop we will provide you with a South African USSD code
and an SMS longcode. In the next section we’ll help you get Vumi
running on your local machine so you can
start developing your first application!

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

Forwarding SMSs from an SMPP bind to a URL

A simple use case for Vumi is to aggregate incoming SMSs and forward them via HTTP POST to a URL.

In this use case we are going to:

	Use a SMSC simulator for local development.

	Configure Vumi accept all incoming and outgoing messages on an SMPP bind.

	Setup a worker that forwards all incoming messages to a URL via HTTP POST.

	Setup Supervisord to manage all the different processes.

Note

Vumi relies for a large part on AMQP for its routing capabilities and some basic understanding is assumed. Have a look at http://blog.springsource.com/2010/06/14/understanding-amqp-the-protocol-used-by-rabbitmq/ for a more detailed explanation of AMQP.

Installing the SMSC simulator

Go to the ./utils directory in the Vumi repository and run the bash script called install_smpp_simulator.sh. This will install the SMSC simulator from http://seleniumsoftware.com on your local machine. This simulator does exactly the same as a normal SMSC would do with the exception that it doesn’t actually relay the messages to mobile networks.:

$ cd ./utils
$./install_smpp_simulator.sh

This will have installed the application in the ./utils/smppsim/SMPPSim directory.

By default the SMPP simulator tries to open port 88 for it’s HTTP console, since you often need administrative rights to open ports lower than 1024 let’s change that to 8080 instead.

Line 60 of ./utils/smppsim/SMPPSim/conf/smppsim.props says:

HTTP_PORT=88

Change this to:

HTTP_PORT=8080

Another change we need to make is on line 83:

ESME_TO_ESME=TRUE

Needs to be changed to, FALSE:

ESME_TO_ESME=FALSE

Having this set to True sometimes causes the SMSC and Vumi to bounce messages back and forth without stopping.

Note

The simulator is a Java application and we’re assuming you have Java installed correctly.

Configuring Vumi

Vumi applications are made up of at least two components, the Transport which deals with in & outbound messages and the Application which acts on the messages received and potentially generates replies.

SMPP Transport

Vumi’s SMPP Transport can be configured by a YAML file, ./config/example_smpp.yaml. For this example, this is what our SMPP configuration looks like:

transport_name: smpp_transport
system_id: smppclient1 # username
password: password # password
host: localhost # the host to connect to
port: 2775 # the port to connect to

The SMPP Transport publishes inbound messages in Vumi’s common message format and accepts the same format for outbound messages.

Here is a sample message:

{
 "message_id": "message1",
 "to_addr": "1234",
 "from_addr": "27761234567",
 "content": "This is an incoming SMS!",
 "transport_name": "smpp_transport",
 "transport_type": "sms",
 "transport_metadata": {
 // this is a dictionary containing
 // transport specific data
 }
}

HTTP Relay Application

Vumi ships with a simple application which forwards all messages it receives as JSON to a given URL with the option of using HTTP Basic Authentication when doing so. This application is also configured using the YAML file:

Setting up the webserver that responds to the HTTP request that the HTTPRelayApplication makes is left as an exercise for the reader. The HTTPRelayApplication has the ability to automatically respond to incoming messages based on the HTTP response received.

To do this:

	The resource must return with a status of 200

	The resource must set an HTTP Header X-Vumi-HTTPRelay-Reply and it must be set to true (case insensitive)

	Any content that is returned in the body of the response is sent back as a message. If you want to limit this to 140 characters for use with SMS then that is the HTTP resource’s responsibility.

Supervisord!

Let’s use Supervisord to ensure all the different parts keep running.
Here is the configuration file supervisord.example.conf:

[inet_http_server] ; inet (TCP) server disabled by default
port=127.0.0.1:9010 ; (ip_address:port specifier, *:port for all iface)

[supervisord]
pidfile=./tmp/pids/supervisord.pid ; (supervisord pidfile;default supervisord.pid)

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=http://127.0.0.1:9010 ; use an http:// url to specify an inet socket

[program:transport]
command=twistd -n
 --pidfile=./tmp/pids/%(program_name)s.pid
 vumi_worker
 --worker-class=vumi.transports.smpp.SmppTransport
 --config=./config/example_smpp.yaml
stdout_logfile=./logs/%(program_name)s_%(process_num)s.log
stderr_logfile=./logs/%(program_name)s_%(process_num)s.err

[program:application]
command=twistd -n
 --pidfile=./tmp/pids/%(program_name)s.pid
 vumi_worker
 --worker-class=vumi.application.http_relay.HTTPRelayApplication
 --config=./config/example_http_relay.yaml
autorestart=true
stdout_logfile=./logs/%(program_name)s_%(process_num)s.log
stderr_logfile=./logs/%(program_name)s_%(process_num)s.err

[program:smsc]
command=java
 -Djava.net.preferIPv4Stack=true
 -Djava.util.logging.config.file=conf/logging.properties
 -jar smppsim.jar
 conf/smppsim.props
autorestart=true
directory=./utils/smppsim/SMPPSim/
stdout_logfile=./logs/%(program_name)s_%(process_num)s.log
stderr_logfile=./logs/%(program_name)s_%(process_num)s.err

Ensure you’re in your python virtualenv and start it with the following command:

$ supervisord -c etc/supervisord.example.conf

You’ll be able to see the HTTP management console at http://localhost:9010/ or at the command line with:

$ supervisorctl -c etc/supervisord.example.conf

Let’s give it a try:

	Go to http://localhost:8080 and send an SMS to Vumi via “Inject an MO message”.

	Type a message, it doesn’t matter what destination_addr you chose, all incoming messages will be routed using the SMPP Transport’s transport_name to the application subscribed to those messages. The HTTPRelayApplication will HTTP POST to the URL provided.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

Applications

Vumi applications implement application logic or call out to
external services that implement such logic. Usually you will
implement your own application workers but Vumi does provide a base
application worker class and a few generic application workers.

	Base class for applications

	HTTP Relay

	RapidSMS Relay

	Sandbox

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Applications

Base class for applications

A base class you should extend when writing applications.

Application

	
class vumi.application.base.ApplicationConfig(config_data, static=False)

	Base config definition for applications.

You should subclass this and add application-specific fields.

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this application instance will use to create its queues.

	send_to (dict) – ‘send_to’ configuration dict.

	
class vumi.application.base.ApplicationWorker(options, config=None)

	Base class for an application worker.

Handles vumi.message.TransportUserMessage and
vumi.message.TransportEvent messages.

Application workers may send outgoing messages using
reply_to() (for replies to incoming messages) or
send_to() (for messages that are not replies).

send_to() can take either an endpoint parameter to specify the
endpoint to send on (and optionally add additional message data from
application configuration).

ALLOWED_ENDPOINTS lists the endpoints this application is allowed
to send messages to using the send_to() method. If it is set to
None, any endpoint is allowed.

Messages sent via send_to() pass optional additional data from
configuration to the TransportUserMessage constructor, based on the
endpoint parameter passed to send_to. This usually contains information
useful for routing the message.

An example send_to() configuration might look like:

- send_to:
 - default:
 transport_name: sms_transport

NOTE: If you are using non-endpoint routing, ‘transport_name’ must be
defined for each send_to section since dispatchers rely on this for routing
outbound messages.

The available set of endpoints defaults to just the single endpoint named
default. If applications wish to define their own set of available
endpoints they should override ALLOWED_ENDPOINTS. Setting
ALLOWED_ENDPOINTS to None allows the application to send on
arbitrary endpoint names.

	
CONFIG_CLASS

	alias of ApplicationConfig

	
static check_endpoint(allowed_endpoints, endpoint)

	Check that endpoint is in the list of allowed endpoints.

	Parameters:	
	allowed_endpoints (list) – List (or set) of allowed endpoints. If allowed_endpoints is
None, all endpoints are allowed.

	endpoint (str) – Endpoint to check. The special value None is equivalent to
default.

	
close_session(message)

	Close a session.

The .reply_to() method should not be called when the session is closed.

	
consume_ack(event)

	Handle an ack message.

	
consume_delivery_report(event)

	Handle a delivery report.

	
consume_nack(event)

	Handle a nack message

	
consume_user_message(message)

	Respond to user message.

	
dispatch_event(event)

	Dispatch to event_type specific handlers.

	
dispatch_user_message(message)

	Dispatch user messages to handler.

	
new_session(message)

	Respond to a new session.

Defaults to calling consume_user_message.

	
setup_application()

	All application specific setup should happen in here.

Subclasses should override this method to perform extra setup.

	
setup_worker()

	Set up basic application worker stuff.

You shouldn’t have to override this in subclasses.

	
teardown_application()

	Clean-up of setup done in setup_application should happen here.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Applications

HTTP Relay

Calls out to an external HTTP API that implements application logic
and provides a similar API for application logic to call when sending
messages.

HTTP Relay

	
class vumi.application.http_relay.HTTPRelayConfig(config_data, static=False)

	Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this application instance will use to create its queues.

	send_to (dict) – ‘send_to’ configuration dict.

	url (URL) – URL to submit incoming message to.

	event_url (URL) – URL to submit incoming events to. (Defaults to the same as ‘url’).

	http_method (str) – HTTP method for submitting messages.

	auth_method (str) – HTTP authentication method.

	username (str) – Username for HTTP authentication.

	password (str) – Password for HTTP authentication.

	
class vumi.application.http_relay.HTTPRelayApplication(options, config=None)

	

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Applications

RapidSMS Relay

Calls out to an application implemented in RapidSMS.

RapidSMS Relay

	
class vumi.application.rapidsms_relay.RapidSMSRelayConfig(config_data, static=False)

	RapidSMS relay configuration.

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this application instance will use to create its queues.

	send_to (dict) – ‘send_to’ configuration dict.

	web_path (str) – Path to listen for outbound messages from RapidSMS on.

	web_port (int) – Port to listen for outbound messages from RapidSMS on.

	redis_manager (dict) – Redis manager configuration (only required if allow_replies is
true)

	allow_replies (bool) – Whether to support replies via the in_reply_to argument from
RapidSMS.

	vumi_username (str) – Username required when calling web_path (default: no
authentication)

	vumi_password (str) – Password required when calling web_path

	vumi_auth_method (str) – Authentication method required when calling web_path.The ‘basic’
method is currently the only available method

	vumi_reply_timeout (int) – Number of seconds to keep original messages in redis so that
replies may be sent via in_reply_to.

	allowed_endpoints (list) – List of allowed endpoints to send from.

	rapidsms_url (URL) – URL of the rapidsms http backend.

	rapidsms_username (str) – Username to use for the rapidsms_url (default: no
authentication)

	rapidsms_password (str) – Password to use for the rapidsms_url

	rapidsms_auth_method (str) – Authentication method to use with rapidsms_url. The ‘basic’
method is currently the only available method.

	rapidsms_http_method (str) – HTTP request method to use for the rapidsms_url

	
class vumi.application.rapidsms_relay.RapidSMSRelay(options, config=None)

	Application that relays messages to RapidSMS.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Applications

Sandbox

Runs custom application logic in a sandbox.

Sandbox application workers

Sandbox

	
class vumi.application.sandbox.SandboxConfig(config_data, static=False)

	Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this application instance will use to create its queues.

	send_to (dict) – ‘send_to’ configuration dict.

	sandbox (dict) – Dictionary of resources to provide to the sandbox. Keys are the
names of resources (as seen inside the sandbox). Values are
dictionaries which must contain a cls key that gives the full
name of the class that provides the resource. Other keys are
additional configuration for that resource.

	executable (str) – Full path to the executable to run in the sandbox.

	args (list) – List of arguments to pass to the executable (not including the
path of the executable itself).

	path (str) – Current working directory to run the executable in.

	env (dict) – Custom environment variables for the sandboxed process.

	timeout (int) – Length of time the subprocess is given to process a message.

	recv_limit (int) – Maximum number of bytes that will be read from a sandboxed
process’ stdout and stderr combined.

	rlimits (dict) – Dictionary of resource limits to be applied to sandboxed
processes. Defaults are fairly restricted. Keys maybe names or
values of the RLIMIT constants in Python resource module. Values
should be appropriate integers.

	logging_resource (str) – Name of the logging resource to use to report errors detected in
sandboxed code (e.g. lines written to stderr, unexpected process
termination). Set to null to disable and report these directly
using Twisted logging instead.

	sandbox_id (str) – This is set based on individual messages.

	
class vumi.application.sandbox.Sandbox(options, config=None)

	Sandbox application worker.

Javascript Sandbox

	
class vumi.application.sandbox.JsSandboxConfig(config_data, static=False)

	JavaScript sandbox configuration.

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this application instance will use to create its queues.

	send_to (dict) – ‘send_to’ configuration dict.

	sandbox (dict) – Dictionary of resources to provide to the sandbox. Keys are the
names of resources (as seen inside the sandbox). Values are
dictionaries which must contain a cls key that gives the full
name of the class that provides the resource. Other keys are
additional configuration for that resource.

	executable (str) – Full path to the executable to run in the sandbox.

	args (list) – List of arguments to pass to the executable (not including the
path of the executable itself).

	path (str) – Current working directory to run the executable in.

	env (dict) – Custom environment variables for the sandboxed process.

	timeout (int) – Length of time the subprocess is given to process a message.

	recv_limit (int) – Maximum number of bytes that will be read from a sandboxed
process’ stdout and stderr combined.

	rlimits (dict) – Dictionary of resource limits to be applied to sandboxed
processes. Defaults are fairly restricted. Keys maybe names or
values of the RLIMIT constants in Python resource module. Values
should be appropriate integers.

	sandbox_id (str) – This is set based on individual messages.

	javascript (str) – JavaScript code to run.

	app_context (str) – Custom context to execute JS with.

	logging_resource (str) – Name of the logging resource to use to report errors detected in
sandboxed code (e.g. lines written to stderr, unexpected process
termination). Set to null to disable and report these directly
using Twisted logging instead.

	
class vumi.application.sandbox.JsSandbox(options, config=None)

	Configuration options:

As for Sandbox except:

	executable defaults to searching for a node.js binary.

	args defaults to the JS sandbox script in the vumi.application
module.

	An instance of JsSandboxResource is added to the sandbox
resources under the name js if no js resource exists.

	An instance of LoggingResource is added to the sandbox
resources under the name log if no log resource exists.

	logging_resource is set to log if it is not set.

	An extra ‘javascript’ parameter specifies the javascript to execute.

	An extra optional ‘app_context’ parameter specifying a custom
context for the ‘javascript’ application to execute with.

Example ‘javascript’ that logs information via the sandbox API
(provided as ‘this’ to ‘on_inbound_message’) and checks that logging
was successful:

api.on_inbound_message = function(command) {
 this.log_info("From command: inbound-message", function (reply) {
 this.log_info("Log successful: " + reply.success);
 this.done();
 });
}

Example ‘app_context’ that makes the Node.js ‘path’ module
available under the name ‘path’ in the context that the sandboxed
javascript executes in:

{path: require('path')}

Javascript File Sandbox

	
class vumi.application.sandbox.JsFileSandbox(options, config=None)

	
	
class CONFIG_CLASS(config_data, static=False)

	Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this application instance will use to create its queues.

	send_to (dict) – ‘send_to’ configuration dict.

	sandbox (dict) – Dictionary of resources to provide to the sandbox. Keys are the
names of resources (as seen inside the sandbox). Values are
dictionaries which must contain a cls key that gives the full
name of the class that provides the resource. Other keys are
additional configuration for that resource.

	executable (str) – Full path to the executable to run in the sandbox.

	args (list) – List of arguments to pass to the executable (not including the
path of the executable itself).

	path (str) – Current working directory to run the executable in.

	env (dict) – Custom environment variables for the sandboxed process.

	timeout (int) – Length of time the subprocess is given to process a message.

	recv_limit (int) – Maximum number of bytes that will be read from a sandboxed
process’ stdout and stderr combined.

	rlimits (dict) – Dictionary of resource limits to be applied to sandboxed
processes. Defaults are fairly restricted. Keys maybe names or
values of the RLIMIT constants in Python resource module. Values
should be appropriate integers.

	logging_resource (str) – Name of the logging resource to use to report errors detected in
sandboxed code (e.g. lines written to stderr, unexpected process
termination). Set to null to disable and report these directly
using Twisted logging instead.

	sandbox_id (str) – This is set based on individual messages.

	javascript_file (str) – The file containting the Javascript to run

	app_context (str) – Custom context to execute JS with.

Sandbox resources

RedisResource

	
class vumi.application.sandbox.RedisResource(name, app_worker, config)

	Resource that provides access to a simple key-value store.

Configuration options:

	Parameters:	
	redis_manager (dict) – Redis manager configuration options.

	keys_per_user_soft (int) – Maximum number of keys each user may make use of in redis
before usage warnings are logged.
(default: 80% of hard limit).

	keys_per_user_hard (int) – Maximum number of keys each user may make use of in redis
(default: 100). Falls back to keys_per_user.

	keys_per_user (int) – Synonym for keys_per_user_hard. Deprecated.

	
handle_delete(*args, **kwargs)

	Delete a key.

	Command fields:

	
	key: The key to delete.

	Reply fields:

	
	success: true if the operation was successful, otherwise
false.

Example:

api.request(
 'kv.delete',
 {key: 'foo'},
 function(reply) {
 api.log_info('Value deleted: ' +
 reply.success);
 }
);

	
handle_get(*args, **kwargs)

	Retrieve the value of a key.

	Command fields:

	
	key: The key whose value should be retrieved.

	Reply fields:

	
	success: true if the operation was successful, otherwise
false.

	value: The value retrieved.

Example:

api.request(
 'kv.get',
 {key: 'foo'},
 function(reply) {
 api.log_info(
 'Value retrieved: ' +
 JSON.stringify(reply.value));
 }
);

	
handle_incr(*args, **kwargs)

	Atomically increment the value of an integer key.

The current value of the key must be an integer. If the key does not
exist, it is set to zero.

	Command fields:

	
	key: The key to delete.

	amount: The integer amount to increment the key by. Defaults
to 1.

	Reply fields:

	
	success: true if the operation was successful, otherwise
false.

	value: The new value of the key.

Example:

api.request(
 'kv.incr',
 {key: 'foo',
 amount: 3},
 function(reply) {
 api.log_info('New value: ' +
 reply.value);
 }
);

	
handle_set(*args, **kwargs)

	Set the value of a key.

	Command fields:

	
	key: The key whose value should be set.

	value: The value to store. May be any JSON serializable
object.

	seconds: Lifetime of the key in seconds. The default null
indicates that the key should not expire.

	Reply fields:

	
	success: true if the operation was successful, otherwise
false.

Example:

api.request(
 'kv.set',
 {key: 'foo',
 value: {x: '42'}},
 function(reply) { api.log_info('Value store: ' +
 reply.success); });

OutboundResource

	
class vumi.application.sandbox.OutboundResource(name, app_worker, config)

	Resource that provides the ability to send outbound messages.

Includes support for replying to the sender of the current message,
replying to the group the current message was from and sending messages
that aren’t replies.

JsSandboxResource

	
class vumi.application.sandbox.JsSandboxResource(name, app_worker, config)

	Resource that initializes a Javascript sandbox.

Typically used alongside vumi/applicaiton/sandboxer.js which is
a simple node.js based Javascript sandbox.

Requires the worker to have a javascript_for_api method.

LoggingResource

	
class vumi.application.sandbox.LoggingResource(name, app_worker, config)

	Resource that allows a sandbox to log messages via Twisted’s
logging framework.

	
handle_critical(api, command)

	Logs a message at the CRITICAL log level.

See handle_log() for details.

	
handle_debug(api, command)

	Logs a message at the DEBUG log level.

See handle_log() for details.

	
handle_error(api, command)

	Logs a message at the ERROR log level.

See handle_log() for details.

	
handle_info(api, command)

	Logs a message at the INFO log level.

See handle_log() for details.

	
handle_log(*args, **kwargs)

	Log a message at the specified severity level.

The other log commands are identical except that level need not
be specified. Using the log-level specific commands is preferred.

	Command fields:

	
	level: The severity level to log at. Must be an integer
log level. Default severity is the INFO log level.

	msg: The message to log.

	Reply fields:

	
	success: true if the operation was successful, otherwise
false.

Example:

api.request(
 'log.log',
 {level: 20,
 msg: 'Abandon ship!'},
 function(reply) {
 api.log_info('New value: ' +
 reply.value);
 }
);

	
handle_warning(api, command)

	Logs a message at the WARNING log level.

See handle_log() for details.

	
log(api, msg, level)

	Logs a message via vumi.log (i.e. Twisted logging).

Sub-class should override this if they wish to log messages
elsewhere. The api parameter is provided for use by such
sub-classes.

The log method should always return a deferred.

HttpClientResource

	
class vumi.application.sandbox.HttpClientResource(name, app_worker, config)

	Resource that allows making HTTP calls to outside services.

All command on this resource share a common set of command
and response fields:

	Command fields:

	
	url: The URL to request

	
	verify_options: A list of options to verify when doing

	an HTTPS request. Possible string values are VERIFY_NONE,
VERIFY_PEER, VERIFY_CLIENT_ONCE and
VERIFY_FAIL_IF_NO_PEER_CERT. Specifying multiple values
results in passing along a reduced OR value
(e.g. VERIFY_PEER | VERIFY_FAIL_IF_NO_PEER_CERT)

	
	headers: A dictionary of keys for the header name and a list

	of values to provide as header values.

	data: The payload to submit as part of the request.

	
	files: A dictionary, submitted as multipart/form-data

	in the request:

[{
 "field name": {
 "file_name": "the file name",
 "content_type": "content-type",
 "data": "data to submit, encoded as base64",
 }
}, ...]

The data field in the dictionary will be base64 decoded
before the HTTP request is made.

	Success reply fields:

	
	success: Set to true

	body: The response body

	code: The HTTP response code

	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure

Example:

api.request(
 'http.get',
 {url: 'http://foo/'},
 function(reply) { api.log_info(reply.body); });

	
agent_class

	alias of Agent

	
handle_delete(api, command)

	Make an HTTP DELETE request.

See HttpResource for details.

	
handle_get(api, command)

	Make an HTTP GET request.

See HttpResource for details.

	
handle_head(api, command)

	Make an HTTP HEAD request.

See HttpResource for details.

	
handle_patch(api, command)

	Make an HTTP PATCH request.

See HttpResource for details.

	
handle_post(api, command)

	Make an HTTP POST request.

See HttpResource for details.

	
handle_put(api, command)

	Make an HTTP PUT request.

See HttpResource for details.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

Transports

Transports provide the means for Vumi to send and receive messages
from people, usually via a third-party such as a mobile network
operator or instant message service provider.

Vumi comes with support for numerous transports built-in. These
include SMPP (SMS), SSMI (USSD), SMSSync (SMS over your Android
phone), XMPP (Google Chat and Jabber), Twitter, IRC, telnet and
numerous SMS and USSD transports for specific mobile network
aggregators.

Transports for common protocols

	Base class for transports

	SMPP

	SSMI

	HTTP RPC

	Mxit

	ParlayX

	SMSSync

	Telnet

	Twitter

	Vumi Go bridge

	XMPP

	IRC

	Dev Null

	Vumi HTTP API Transport

	Old Vumi HTTP Transport

Transports for specific aggregators

	Airtel

	Apposit

	Cellulant

	IMImobile Transport

	Infobip

	Integrat

	MediaEdgeGSM

	Mediafone Cameroun

	MTECH USSD

	Safaricom

	Opera

	Vas2Nets

	Vodacom Messaging

	MTN Nigeria

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Base class for transports

A base class you should extend when writing transports.

Transport

	
class vumi.transports.base.TransportConfig(config_data, static=False)

	Base config definition for transports.

You should subclass this and add transport-specific fields.

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	
class vumi.transports.base.Transport(options, config=None)

	Base class for transport workers.

The following attributes are available for subclasses to control behaviour:

	start_message_consumer – Set to False if the message
consumer should not be started. The subclass is responsible for starting
it in this case.

	
CONFIG_CLASS

	alias of TransportConfig

	
static generate_message_id()

	Generate a message id.

	
handle_outbound_message(message)

	This must be overridden to read outbound messages and do the right
thing with them.

	
publish_ack(user_message_id, sent_message_id, **kw)

	Helper method for publishing an ack event.

	
publish_delivery_report(user_message_id, delivery_status, **kw)

	Helper method for publishing a delivery_report event.

	
publish_event(**kw)

	Publish a TransportEvent message.

Some default parameters are handled, so subclasses don’t have
to provide a lot of boilerplate.

	
publish_message(**kw)

	Publish a TransportUserMessage message.

Some default parameters are handled, so subclasses don’t have
to provide a lot of boilerplate.

	
publish_nack(user_message_id, reason, **kw)

	Helper method for publishing a nack event.

	
publish_status(**kw)

	Helper method for publishing a status message.

	
send_failure(message, exception, traceback)

	Send a failure report.

	
setup_transport()

	All transport_specific setup should happen in here.

Subclasses should override this method to perform extra setup.

	
setup_worker()

	Set up basic transport worker stuff.

You shouldn’t have to override this in subclasses.

	
teardown_transport()

	Clean-up of setup done in setup_transport should happen here.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

SMPP

SMPP Transport

	
vumi.transports.smpp.SmppTransport

	alias of SmppTransceiverTransportWithOldConfig

Example configuration

system_id: <provided by SMSC>
password: <provided by SMSC>
host: smpp.smppgateway.com
port: 2775
system_type: <provided by SMSC>

Optional variables, some SMSCs require these to be set.
interface_version: "34"
dest_addr_ton: 1
dest_addr_npi: 1
registered_delivery: 1

TRANSPORT_NAME: smpp_transport

Number Recognition
COUNTRY_CODE: "27"

OPERATOR_NUMBER:
 VODACOM: "<outbound MSISDN to be used for this MNO>"
 MTN: "<outbound MSISDN to be used for this MNO>"
 CELLC: "<outbound MSISDN to be used for this MNO>"
 VIRGIN: "<outbound MSISDN to be used for this MNO>"
 8TA: "<outbound MSISDN to be used for this MNO>"
 UNKNOWN: "<outbound MSISDN to be used for this MNO>"

OPERATOR_PREFIX:
 2771:
 27710: MTN
 27711: VODACOM
 27712: VODACOM
 27713: VODACOM
 27714: VODACOM
 27715: VODACOM
 27716: VODACOM
 27717: MTN
 27719: MTN

 2772: VODACOM
 2773: MTN
 2774:
 27740: CELLC
 27741: VIRGIN
 27742: CELLC
 27743: CELLC
 27744: CELLC
 27745: CELLC
 27746: CELLC
 27747: CELLC
 27748: CELLC
 27749: CELLC

 2776: VODACOM
 2778: MTN
 2779: VODACOM
 2781:
 27811: 8TA
 27812: 8TA
 27813: 8TA
 27814: 8TA

 2782: VODACOM
 2783: MTN
 2784: CELLC

Notes

	This transport does no MSISDN normalization

	This transport tries to guess the outbound MSISDN for any SMS sent
using a operator prefix lookup.

Use of Redis in the SMPP Transport

Redis is used for all situations where temporary information must be
cached where:

	it will survive system shutdowns

	it can be shared between workers

One use of Redis is for mapping between SMPP sequence_numbers and long
term unique id’s on the ESME and the SMSC.

The sequence_number parameter is a revolving set of integers used to
pair outgoing async pdu’s with their response, i.e. submit_sm &
submit_sm_resp.

Both submit_sm and the corresponding submit_sm_resp will share a
single sequence_number, however, for long term storage and future
reference, it is necessary to link the id of the message stored on the
SMSC (message_id in the submit_sm_resp) back to the id of the sent
message. As the submit_sm_resp pdu’s are received, the original id is
looked up in Redis via the sequence_number and associated with the
message_id in the response.

Followup pdu’s from the SMSC (i.e. delivery reports) will reference
the original message by the message_id held by the SMSC which was
returned in the submit_sm_resp.

Status event catalogue

The SMPP transport publishes the following status events when status event
publishing is enabled.

starting

Published when the transport is busy starting.

Fields:

	status: down

	type: starting

	component: smpp

binding

Published when the transport has established a connection to the SMSC, has
attempted to bind, and is waiting for the SMSC’s response.

Fields:

	status: down

	type: binding

	component: smpp

bound

Published when the transport has received a bind response from the SMSC and is
ready to send and receive messages.

Fields:

	status: ok

	type: bound

	component: smpp

bind_timeout

Published when the transport has not bound within the interval given by the
smpp_bind_timeout config field.

Fields:

	status: down

	type: bind_timeout

	component: smpp

unbinding

Published when the transport has attempted to unbind, and is waiting for the
SMSC’s response.

Fields:

	status: down

	type: unbinding

	component: smpp

connection_lost

Published when a transport loses its connection to the SMSC. This occurs in the
following situations:

	after successfully unbinding

	if an unbind attempt times out

	when the connection to the SMSC is lost unexpectedly

Fields:

	status: down

	type: connection_lost

	component: smpp

throttled

Published when throttling starts for the transport and when throttling
continues for a transport after rebinding. Throttling starts in two situations:

	the SMSC has replied to a message we attempted to send with an
ESME_RTHROTTLED response

	we have reached the maximum number of transmissions per second allowed by the
transport (set by the mt_tps config field), where a transmission is a
mobile-terminating message put onto the wire by the transport.

Fields:

	status: degraded

	type: throttled

	component: smpp

throttled_end

Published when the transport is no longer throttled. This happens in two
situations:

	we have retried an earlier message we attempted to send that was given a
ESME_RTHROTTLED response, and the SMSC has responded to the retried
message with a ESME_ROK response (that is, the retry was successful)

	the transport is no longer at the maximum number of transmissions per
second

Fields:

	status: ok

	type: throttled_end

	component: smpp

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

SSMI

Truteq SSMI Transport

TruTeq USSD transport.

	
class vumi.transports.truteq.truteq.TruteqTransport(options, config=None)

	Bases: vumi.transports.base.Transport

A transport for TruTeq.

Currently only USSD messages are supported.

	
CONFIG_CLASS

	alias of TruteqTransportConfig

	
service_class

	alias of ReconnectingClientService

	
class vumi.transports.truteq.truteq.TruteqTransportConfig(config_data, static=False)

	Bases: vumi.transports.base.TransportConfig

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	username (str) – Username of the TruTeq account to connect to.

	password (str) – Password for the TruTeq account.

	twisted_endpoint (twisted_endpoint) – The endpoint to connect to.

	link_check_period (int) – Number of seconds between link checks sent to the server.

	ussd_session_lifetime (int) – Maximum number of seconds to retain USSD session information.

	debug (bool) – Print verbose log output.

	redis_manager (dict) – How to connect to Redis.

	host (str) – DEPRECATED ‘host’ and ‘port’ fields may be used in place of the
‘twisted_endpoint’ field.

	port (int) – DEPRECATED ‘host’ and ‘port’ fields may be used in place of the
‘twisted_endpoint’ field.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

HTTP RPC

Base class for constructing HTTP-based transports.

HTTP RPC base class

	
class vumi.transports.httprpc.httprpc.HttpRpcTransport(options, config=None)

	Bases: vumi.transports.base.Transport

Base class for synchronous HTTP transports.

Because a reply from an application worker is needed before the HTTP
response can be completed, a reply needs to be returned to the same
transport worker that generated the inbound message. This means that
currently there many only be one transport worker for each instance
of this transport of a given name.

	
CONFIG_CLASS

	alias of HttpRpcTransportConfig

	
add_status(**kw)

	Publishes a status if it is not a repeat of the previously
published status.

	
get_clock()

	For easier stubbing in tests

	
get_transport_url(suffix='')

	Get the URL for the HTTP resource. Requires the worker to be started.

This is mostly useful in tests, and probably shouldn’t be used
in non-test code, because the API might live behind a load
balancer or proxy.

	
on_degraded_response_time(message_id, time)

	Can be overridden by subclasses to do something when the
response time is high enough for the transport to be considered
running in a degraded state.

	
on_down_response_time(message_id, time)

	Can be overridden by subclasses to do something when the
response time is high enough for the transport to be considered
non-functioning.

	
on_good_response_time(message_id, time)

	Can be overridden by subclasses to do something when the
response time is low enough for the transport to be considered
running normally.

	
on_timeout(message_id, time)

	Can be overridden by subclasses to do something when the
response times out.

	
set_request_end(message_id)

	Checks the saved timestamp to see the response time.
If the starting timestamp for the message cannot be found, nothing is
done.
If the time is more than response_time_down, a down status event
is sent.
If the time more than response_time_degraded, a degraded status
event is sent.
If the time is less than response_time_degraded, an ok status
event is sent.

	
class vumi.transports.httprpc.httprpc.HttpRpcTransportConfig(config_data, static=False)

	Bases: vumi.transports.base.TransportConfig

Base config definition for transports.

You should subclass this and add transport-specific fields.

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	web_path (str) – The path to listen for requests on.

	web_port (int) – The port to listen for requests on, defaults to 0.

	web_username (str) – The username to require callers to authenticate with. If None
then no authentication is required. Currently only HTTP Basic
authentication is supported.

	web_password (str) – The password to go with web_username. Must be None if and
only if web_username is None.

	web_auth_domain (str) – The name of authentication domain.

	health_path (str) – The path to listen for downstream health checks on (useful with
HAProxy)

	request_cleanup_interval (int) – How often should we actively look for old connections that should
manually be timed out. Anything less than 1 disables the request
cleanup meaning that all request objects will be kept in memory
until the server is restarted, regardless if the remote side has
dropped the connection or not. Defaults to 5 seconds.

	request_timeout (int) – How long should we wait for the remote side generating the
response for this synchronous operation to come back. Any
connection that has waited longer than request_timeout seconds
will manually be closed. Defaults to 4 minutes.

	request_timeout_status_code (int) – What HTTP status code should be generated when a timeout occurs.
Defaults to 504 Gateway Timeout.

	request_timeout_body (str) – What HTTP body should be returned when a timeout occurs. Defaults
to ‘’.

	noisy (bool) – Defaults to False set to True to make this transport log
verbosely.

	validation_mode (str) – The mode to operate in. Can be ‘strict’ or ‘permissive’. If
‘strict’ then any parameter received that is not listed in
EXPECTED_FIELDS nor in IGNORED_FIELDS will raise an error. If
‘permissive’ then no error is raised as long as all the
EXPECTED_FIELDS are present.

	response_time_down (float) – The maximum time allowed for a response before the service is
considered down

	response_time_degraded (float) – The maximum time allowed for a response before the service is
considered degraded

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Mxit

Mxit Transport

	
class vumi.transports.mxit.mxit.MxitTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

HTTP Transport for MXit, implemented using the MXit Mobi Portal
(for inbound messages and replies) and the Messaging API (for sends
that aren’t replies).

	Mobi Portal API specification:
http://dev.mxit.com/docs/mobi-portal-api

	Message API specification:
https://dev.mxit.com/docs/restapi/messaging/post-message-send

	
CONFIG_CLASS

	alias of MxitTransportConfig

	
html_decode(html)

	Turns ‘foo’ into u’foo’

	
class vumi.transports.mxit.mxit.MxitTransportConfig(config_data, static=False)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransportConfig

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	web_path (str) – The path to listen for requests on.

	web_port (int) – The port to listen for requests on, defaults to 0.

	web_username (str) – The username to require callers to authenticate with. If None
then no authentication is required. Currently only HTTP Basic
authentication is supported.

	web_password (str) – The password to go with web_username. Must be None if and
only if web_username is None.

	web_auth_domain (str) – The name of authentication domain.

	health_path (str) – The path to listen for downstream health checks on (useful with
HAProxy)

	request_cleanup_interval (int) – How often should we actively look for old connections that should
manually be timed out. Anything less than 1 disables the request
cleanup meaning that all request objects will be kept in memory
until the server is restarted, regardless if the remote side has
dropped the connection or not. Defaults to 5 seconds.

	request_timeout (int) – How long should we wait for the remote side generating the
response for this synchronous operation to come back. Any
connection that has waited longer than request_timeout seconds
will manually be closed. Defaults to 4 minutes.

	request_timeout_status_code (int) – What HTTP status code should be generated when a timeout occurs.
Defaults to 504 Gateway Timeout.

	request_timeout_body (str) – What HTTP body should be returned when a timeout occurs. Defaults
to ‘’.

	noisy (bool) – Defaults to False set to True to make this transport log
verbosely.

	validation_mode (str) – The mode to operate in. Can be ‘strict’ or ‘permissive’. If
‘strict’ then any parameter received that is not listed in
EXPECTED_FIELDS nor in IGNORED_FIELDS will raise an error. If
‘permissive’ then no error is raised as long as all the
EXPECTED_FIELDS are present.

	response_time_down (float) – The maximum time allowed for a response before the service is
considered down

	response_time_degraded (float) – The maximum time allowed for a response before the service is
considered degraded

	client_id (str) – The OAuth2 ClientID assigned to this transport.

	client_secret (str) – The OAuth2 ClientSecret assigned to this transport.

	timeout (int) – Timeout for outbound Mxit HTTP API calls.

	redis_manager (dict) – How to connect to Redis

	api_send_url (str) – The URL for the Mxit message sending API.

	api_auth_url (str) – The URL for the Mxit authentication API.

	api_auth_scopes (list) – The list of scopes to request access to.

	
exception vumi.transports.mxit.mxit.MxitTransportException

	Bases: exceptions.Exception

Raised when the Mxit API returns an error

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

ParlayX

ParlayX SMS Transport

	
class vumi.transports.parlayx.parlayx.ParlayXTransport(options, config=None)

	Bases: vumi.transports.base.Transport

ParlayX SMS transport.

ParlayX is a defunkt standard web service API for telephone networks.
See http://en.wikipedia.org/wiki/Parlay_X for an overview.

Warning

This transport has not been tested against another ParlayX
implementation. If you use it, please provide feedback to the
Vumi development team on your experiences.

	
CONFIG_CLASS

	alias of ParlayXTransportConfig

	
handle_outbound_message(message)

	Send a text message via the ParlayX client.

	
handle_outbound_message_failure(*args, **kwargs)

	Handle outbound message failures.

ServiceException, PolicyException and client-class SOAP faults
result in PermanentFailure being raised; server-class SOAP faults
instances result in TemporaryFailure being raised; and other failures
are passed through.

	
handle_raw_inbound_message(correlator, linkid, inbound_message)

	Handle incoming text messages from SmsNotificationService callbacks.

	
class vumi.transports.parlayx.parlayx.ParlayXTransportConfig(config_data, static=False)

	Bases: vumi.transports.base.TransportConfig

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	web_notification_path (str) – Path to listen for delivery and receipt notifications on

	web_notification_port (int) – Port to listen for delivery and receipt notifications on

	notification_endpoint_uri (str) – URI of the ParlayX SmsNotificationService in Vumi

	short_code (str) – Service activation number or short code to receive deliveries for

	remote_send_uri (str) – URI of the remote ParlayX SendSmsService

	remote_notification_uri (str) – URI of the remote ParlayX SmsNotificationService

	start_notifications (bool) – Start (and stop) the ParlayX notification service?

	service_provider_service_id (str) – Provisioned service provider service identifier

	service_provider_id (str) – Provisioned service provider identifier/username

	service_provider_password (str) – Provisioned service provider password

	
vumi.transports.parlayx.parlayx.extract_message_id(correlator)

	Extract the Vumi message identifier from a ParlayX correlator.

	
vumi.transports.parlayx.parlayx.unique_correlator(message_id, _uuid=None)

	Construct a unique message identifier from an existing message
identifier.

This is necessary for the cases where a TransportMessage needs to
be transmitted, since ParlayX wants unique identifiers for all sent
messages.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

SMSSync

SMSSync Transport

	
class vumi.transports.smssync.smssync.BaseSmsSyncTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

Ushahidi SMSSync Transport for getting messages into vumi.

	Parameters:	
	web_path (str) – The path relative to the host where this listens

	web_port (int) – The port this listens on

	transport_name (str) – The name this transport instance will use to create its queues

	redis_manager (dict) – Redis client configuration.

	reply_delay (float) – The amount of time to wait (in seconds) for a reply message
before closing the SMSSync HTTP inbound message
request. Replies received within this amount of time will be
returned with the reply (default: 0.5s).

	
add_msginfo_metadata(payload, msginfo)

	Update an outbound message’s payload’s transport_metadata to allow
msginfo to be reconstructed from replies.

	
callLater(_seconds, _f, *args, **kw)

	See twisted.internet.interfaces.IReactorTime.callLater.

	
msginfo_for_message(msg)

	Returns an SmsSyncMsgInfo instance for this outbound
message.

May return a deferred that yields the actual result to its callback.

	
msginfo_for_request(request)

	Returns an SmsSyncMsgInfo instance for this request.

May return a deferred that yields the actual result to its callback.

	
class vumi.transports.smssync.smssync.MultiSmsSync(options, config=None)

	Bases: vumi.transports.smssync.smssync.BaseSmsSyncTransport

Ushahidi SMSSync Transport for a multiple phones.

Each phone accesses a URL that has the form <web_path>/<account_id>/.
A blank secret should be entered into the SMSSync secret field.

Additional configuration options:

	Parameters:	country_codes (dict) – Map from account_id to the country code to use when normalizing
MSISDNs sent by SMSSync to that API URL. If an account_id is not
in this map the default is to use an empty country code string).

	
class vumi.transports.smssync.smssync.SingleSmsSync(options, config=None)

	Bases: vumi.transports.smssync.smssync.BaseSmsSyncTransport

Ushahidi SMSSync Transport for a single phone.

Additional configuration options:

	Parameters:	
	smssync_secret (str) – Secret of the single phone (default: ‘’, i.e. no secret set)

	account_id (str) – Account id for storing outbound messages under. Defaults to
the smssync_secret which is fine unless the secret changes.

	country_code (str) – Default country code to use when normalizing MSISDNs sent by
SMSSync (default is the empty string, which assumes numbers
already include the international dialing prefix).

	
class vumi.transports.smssync.smssync.SmsSyncMsgInfo(account_id, smssync_secret, country_code)

	Bases: object

Holder of attributes needed to process an SMSSync message.

	Parameters:	
	account_id (str) – An ID for the acocunt this message is being sent
to / from.

	smssync_secret (str) – The shared SMSSync secret for the account this message
is being sent to / from.

	country_code (str) – The default country_code for the account this message
is being sent to / from.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Telnet

Telnet Transport

Transport that sends and receives to telnet clients.

	
class vumi.transports.telnet.telnet.TelnetServerConfig(config_data, static=False)

	Bases: vumi.transports.base.TransportConfig

Telnet transport configuration.

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	twisted_endpoint (twisted_endpoint) – The endpoint the Telnet server will listen on.

	to_addr (str) – The to_addr to use for inbound messages. The default is to use the
host:port of the telnet server.

	transport_type (str) – The transport_type to use for inbound messages.

	telnet_host (str) – DEPRECATED ‘telnet_host’ and ‘telnet_port’ fields may be used
inplace of the ‘twisted_endpoint’ field.

	telnet_port (int) – DEPRECATED ‘telnet_host’ and ‘telnet_port’ fields may be used in
place of the ‘twisted_endpoint’ field.

	
class vumi.transports.telnet.telnet.TelnetServerTransport(options, config=None)

	Bases: vumi.transports.base.Transport

Telnet based transport.

This transport listens on a specified port for telnet
clients and routes lines to and from connected clients.

	
CONFIG_CLASS

	alias of TelnetServerConfig

	
protocol

	alias of TelnetTransportProtocol

	
class vumi.transports.telnet.telnet.TelnetTransportProtocol(vumi_transport)

	Bases: twisted.conch.telnet.TelnetProtocol

Extends Twisted’s TelnetProtocol for the Telnet transport.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Twitter

Twitter Transport

	
class vumi.transports.twitter.twitter.TwitterTransport(options, config=None)

	Bases: vumi.transports.base.Transport

Twitter transport.

	
CONFIG_CLASS

	alias of TwitterTransportConfig

	
class vumi.transports.twitter.twitter.TwitterTransportConfig(config_data, static=False)

	Bases: vumi.transports.base.TransportConfig

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	screen_name (str) – The screen name for the twitter account

	consumer_key (str) – The OAuth consumer key for the twitter account

	consumer_secret (str) – The OAuth consumer secret for the twitter account

	access_token (str) – The OAuth access token for the twitter account

	access_token_secret (str) – The OAuth access token secret for the twitter account

	endpoints (twitter_endpoints) – Which endpoints to use for dms and tweets

	terms (list) – A list of terms to be tracked by the transport

	autofollow (bool) – Determines whether the transport will follow users that follow the
transport’s user

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Vumi Go bridge

Vumi Bridge Transport

	
class vumi.transports.vumi_bridge.vumi_bridge.GoConversationClientTransport(options, config=None)

	Bases: vumi.transports.vumi_bridge.vumi_bridge.GoConversationTransportBase

This transport essentially connects as a client to Vumi Go’s streaming
HTTP API [1].

It allows one to bridge Vumi and Vumi Go installations.

	NOTE: Since we’re basically bridging two separate installations we’re

	leaving some of the attributes that we would normally change the
same. Specifically transport_type.

	[1]	https://github.com/praekelt/vumi-go/blob/develop/docs/http_api.rst

	
CONFIG_CLASS

	alias of VumiBridgeClientTransportConfig

	
class vumi.transports.vumi_bridge.vumi_bridge.VumiBridgeClientTransportConfig(config_data, static=False)

	Bases: vumi.transports.base.TransportConfig

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	account_key (str) – The account key to connect with.

	conversation_key (str) – The conversation key to use.

	access_token (str) – The access token for the conversation key.

	base_url (str) – The base URL for the API

	message_life_time (int) – How long to keep message_ids around for.

	redis_manager (dict) – Redis client configuration.

	max_reconnect_delay (int) – Maximum number of seconds between connection attempts

	max_retries (int) – Maximum number of consecutive unsuccessful connection attempts
after which no further connection attempts will be made. If this
is not explicitly set, no maximum is applied

	initial_delay (float) – Initial delay for first reconnection attempt

	factor (float) – A multiplicitive factor by which the delay grows

	jitter (float) – Percentage of randomness to introduce into the delay lengthto
prevent stampeding.

	
class vumi.transports.vumi_bridge.vumi_bridge.VumiBridgeServerTransportConfig(config_data, static=False)

	Bases: vumi.transports.vumi_bridge.vumi_bridge.VumiBridgeClientTransportConfig

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	account_key (str) – The account key to connect with.

	conversation_key (str) – The conversation key to use.

	access_token (str) – The access token for the conversation key.

	base_url (str) – The base URL for the API

	message_life_time (int) – How long to keep message_ids around for.

	redis_manager (dict) – Redis client configuration.

	max_reconnect_delay (int) – Maximum number of seconds between connection attempts

	max_retries (int) – Maximum number of consecutive unsuccessful connection attempts
after which no further connection attempts will be made. If this
is not explicitly set, no maximum is applied

	initial_delay (float) – Initial delay for first reconnection attempt

	factor (float) – A multiplicitive factor by which the delay grows

	jitter (float) – Percentage of randomness to introduce into the delay lengthto
prevent stampeding.

	web_port (int) – The port to listen for requests on, defaults to 0.

	message_path (str) – The path to listen for message requests on.

	event_path (str) – The path to listen for event requests on.

	health_path (str) – The path to listen for downstream health checks on (useful with
HAProxy)

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

XMPP

XMPP Transport

	
class vumi.transports.xmpp.xmpp.TransportPresenceClientProtocol(initialized_callback, *args, **kwargs)

	Bases: wokkel.xmppim.PresenceClientProtocol

A custom presence protocol to automatically accept any subscription
attempt.

	
class vumi.transports.xmpp.xmpp.XMPPTransport(options, config=None)

	Bases: vumi.transports.base.Transport

XMPP transport.

Configuration parameters:

	Parameters:	
	host (str) – The host of the XMPP server to connect to.

	port (int) – The port on the XMPP host to connect to.

	debug (bool) – Whether or not to show all the XMPP traffic. Defaults to False.

	username (str) – The XMPP account username

	password (str) – The XMPP account password

	status (str) – The XMPP status ‘away’, ‘xa’, ‘chat’ or ‘dnd’

	status_message (str) – The natural language status message for this XMPP transport.

	presence_interval (int) – How often (in seconds) to send a presence update to the roster.

	ping_interval (int) – How often (in seconds) to send a keep-alive ping to the XMPP server
to keep the connection alive. Defaults to 60 seconds.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

IRC

IRC Transport

IRC transport.

	
class vumi.transports.irc.irc.IrcConfig(config_data, static=False)

	Bases: vumi.transports.base.TransportConfig

IRC transport config.

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	twisted_endpoint (twisted_endpoint) – Endpoint to connect to the IRC server on.

	nickname (str) – IRC nickname for the transport IRC client to use.

	channels (list) – List of channels to join.

	network (str) – DEPRECATED ‘network’ and ‘port’ fields may be used in place of
the ‘twisted_endpoint’ field.

	port (int) – DEPRECATED ‘network’ and ‘port’ fields may be used in place of
the ‘twisted_endpoint’ field.

	
class vumi.transports.irc.irc.IrcMessage(sender, command, recipient, content, nickname=None)

	Bases: object

Container for details of a message to or from an IRC user.

	Parameters:	
	sender (str) – Who sent the message (usually user!ident@hostmask).

	recipient (str) – User or channel recieving the message.

	content (str) – Contents of message.

	nickname (str) – Nickname used by the client that received the message.
Optional.

	command (str) – IRC command that produced the message.

	
static canonicalize_recipient(recipient)

	Convert a generic IRC address (with possible server parts)
to a simple lowercase username or channel.

	
channel()

	Return the channel if the recipient is a channel.

Otherwise return None.

	
class vumi.transports.irc.irc.IrcTransport(options, config=None)

	Bases: vumi.transports.base.Transport

IRC based transport.

	
CONFIG_CLASS

	alias of IrcConfig

	
class vumi.transports.irc.irc.VumiBotFactory(vumibot_args)

	Bases: twisted.internet.protocol.ClientFactory

A factory for VumiBotClient instances.

A new protocol instance will be created each time we connect to
the server.

	
protocol

	alias of VumiBotProtocol

	
class vumi.transports.irc.irc.VumiBotProtocol(nickname, channels, irc_transport)

	Bases: twisted.words.protocols.irc.IRCClient

An IRC bot that bridges IRC to Vumi.

	
action(sender, recipient, message)

	This will get called when the bot sees someone do an action.

	
alterCollidedNick(nickname)

	Generate an altered version of a nickname that caused a collision in an
effort to create an unused related name for subsequent registration.

	
irc_NICK(prefix, params)

	Called when an IRC user changes their nickname.

	
joined(channel)

	This will get called when the bot joins the channel.

	
noticed(sender, recipient, message)

	This will get called when the bot receives a notice.

	
privmsg(sender, recipient, message)

	This will get called when the bot receives a message.

	
signedOn()

	Called when bot has succesfully signed on to server.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Dev Null

Dev Null Transport

	
class vumi.transports.devnull.devnull.DevNullTransport(options, config=None)

	Bases: vumi.transports.base.Transport

DevNullTransport for messages that need fake delivery to networks.
Useful for testing.

Configuration parameters:

	Parameters:	
	transport_type (str) – The transport type to emulate, defaults to sms.

	ack_rate (float) – How many messages should be ack’d. The remainder will be nacked.
The failure_rate and reply_rate treat the ack_rate as 100%.

	failure_rate (float) – How many messages should be treated as failures.
Float value between 0.0 and 1.0.

	reply_rate (float) – For how many messages should we generate a reply?
Float value between 0.0 and 1.0.

	reply_copy (str) – What copy should be sent as the reply, defaults to echo-ing the content
of the outbound message.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Vumi HTTP API Transport

HTTP API Transport

	
class vumi.transports.api.api.HttpApiConfig(config_data, static=False)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransportConfig

HTTP API configuration.

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	web_path (str) – The path to listen for requests on.

	web_port (int) – The port to listen for requests on, defaults to 0.

	web_username (str) – The username to require callers to authenticate with. If None
then no authentication is required. Currently only HTTP Basic
authentication is supported.

	web_password (str) – The password to go with web_username. Must be None if and
only if web_username is None.

	web_auth_domain (str) – The name of authentication domain.

	health_path (str) – The path to listen for downstream health checks on (useful with
HAProxy)

	request_cleanup_interval (int) – How often should we actively look for old connections that should
manually be timed out. Anything less than 1 disables the request
cleanup meaning that all request objects will be kept in memory
until the server is restarted, regardless if the remote side has
dropped the connection or not. Defaults to 5 seconds.

	request_timeout (int) – How long should we wait for the remote side generating the
response for this synchronous operation to come back. Any
connection that has waited longer than request_timeout seconds
will manually be closed. Defaults to 4 minutes.

	request_timeout_status_code (int) – What HTTP status code should be generated when a timeout occurs.
Defaults to 504 Gateway Timeout.

	request_timeout_body (str) – What HTTP body should be returned when a timeout occurs. Defaults
to ‘’.

	noisy (bool) – Defaults to False set to True to make this transport log
verbosely.

	validation_mode (str) – The mode to operate in. Can be ‘strict’ or ‘permissive’. If
‘strict’ then any parameter received that is not listed in
EXPECTED_FIELDS nor in IGNORED_FIELDS will raise an error. If
‘permissive’ then no error is raised as long as all the
EXPECTED_FIELDS are present.

	response_time_down (float) – The maximum time allowed for a response before the service is
considered down

	response_time_degraded (float) – The maximum time allowed for a response before the service is
considered degraded

	reply_expected (bool) – True if a reply message is expected.

	allowed_fields (list) – The list of fields a request is allowed to contain. Defaults to
the DEFAULT_ALLOWED_FIELDS class attribute.

	field_defaults (dict) – Default values for fields not sent by the client.

	
class vumi.transports.api.api.HttpApiTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

Native HTTP API for getting messages into vumi.

NOTE: This has no security. Put it behind a firewall or something.

If reply_expected is True, the transport will wait for a reply message
and will return the reply’s content as the HTTP response body. If False,
the message_id of the dispatched incoming message will be returned.

	
CONFIG_CLASS

	alias of HttpApiConfig

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Old Vumi HTTP Transport

A deprecated simple API for submitting Vumi messages into Vumi.

Old HTTP Transports

	
class vumi.transports.api.oldapi.OldSimpleHttpTransport(options, config=None)

	Maintains the API used by the old Django based
method of loading SMS’s into VUMI over HTTP

Configuration options:

	web_path : str

	The path relative to the host where this listens

	web_port : int

	The port this listens on

	transport_name : str

	The name this transport instance will use to create it’s queues

	identities : dictionary

	user : str
password : str
default_transport : str

	
class vumi.transports.api.oldapi.OldTemplateHttpTransport(options, config=None)

	

Notes

Default allowed keys:

	content

	to_addr

	from_addr

Others can be allowed by specifying the allowed_fields in the
configuration file.

There is no limit on the length of the content so if you are
publishing to a length constrained transport such as SMS then you are
responsible for limiting the length appropriately.

If you expect a reply from the Application that is dealing with
these requests then set the reply_expected boolean to true in the
config file. That will keep the HTTP connection open until a response
is returned. The content of the reply message is used as the HTTP
response body.

Example configuration

transport_name: http_transport
web_path: /a/path/
web_port: 8123
reply_expected: false
allowed_fields:
 - content
 - to_addr
 - from_addr
 - provider
field_defaults:
 transport_type: http

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Airtel

Airtel USSD Transport

	
class vumi.transports.airtel.airtel.AirtelUSSDTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

Client implementation for the Comviva Flares HTTP Pull API.
Based on Flares 1.5.0, document version 1.2.0

	
CONFIG_CLASS

	alias of AirtelUSSDTransportConfig

	
class vumi.transports.airtel.airtel.AirtelUSSDTransportConfig(config_data, static=False)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransportConfig

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	web_path (str) – The path to listen for requests on.

	web_port (int) – The port to listen for requests on, defaults to 0.

	web_username (str) – The username to require callers to authenticate with. If None
then no authentication is required. Currently only HTTP Basic
authentication is supported.

	web_password (str) – The password to go with web_username. Must be None if and
only if web_username is None.

	web_auth_domain (str) – The name of authentication domain.

	health_path (str) – The path to listen for downstream health checks on (useful with
HAProxy)

	request_cleanup_interval (int) – How often should we actively look for old connections that should
manually be timed out. Anything less than 1 disables the request
cleanup meaning that all request objects will be kept in memory
until the server is restarted, regardless if the remote side has
dropped the connection or not. Defaults to 5 seconds.

	request_timeout (int) – How long should we wait for the remote side generating the
response for this synchronous operation to come back. Any
connection that has waited longer than request_timeout seconds
will manually be closed. Defaults to 4 minutes.

	request_timeout_status_code (int) – What HTTP status code should be generated when a timeout occurs.
Defaults to 504 Gateway Timeout.

	request_timeout_body (str) – What HTTP body should be returned when a timeout occurs. Defaults
to ‘’.

	noisy (bool) – Defaults to False set to True to make this transport log
verbosely.

	validation_mode (str) – The mode to operate in. Can be ‘strict’ or ‘permissive’. If
‘strict’ then any parameter received that is not listed in
EXPECTED_FIELDS nor in IGNORED_FIELDS will raise an error. If
‘permissive’ then no error is raised as long as all the
EXPECTED_FIELDS are present.

	response_time_down (float) – The maximum time allowed for a response before the service is
considered down

	response_time_degraded (float) – The maximum time allowed for a response before the service is
considered degraded

	airtel_username (str) – The username for this transport

	airtel_password (str) – The password for this transport

	airtel_charge (bool) – Whether or not to charge for the responses sent.

	airtel_charge_amount (int) – How much to charge

	redis_manager (dict) – Parameters to connect to Redis with.

	session_key_prefix (str) – The prefix to use for session key management. Specify thisif you
are using more than 1 worker in a load-balancedfashion.

	ussd_session_timeout (int) – Max length of a USSD session

	to_addr_pattern (str) – A regular expression that to_addr values in messages that start a
new USSD session must match. Initial messages with invalid to_addr
values are rejected.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Apposit

Apposit Transport

	
class vumi.transports.apposit.apposit.AppositTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

HTTP transport for Apposit’s interconnection services.

	
CONFIG_CLASS

	alias of AppositTransportConfig

	
class vumi.transports.apposit.apposit.AppositTransportConfig(config_data, static=False)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransportConfig

Apposit transport config.

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	web_path (str) – The path to listen for requests on.

	web_port (int) – The port to listen for requests on, defaults to 0.

	web_username (str) – The username to require callers to authenticate with. If None
then no authentication is required. Currently only HTTP Basic
authentication is supported.

	web_password (str) – The password to go with web_username. Must be None if and
only if web_username is None.

	web_auth_domain (str) – The name of authentication domain.

	health_path (str) – The path to listen for downstream health checks on (useful with
HAProxy)

	request_cleanup_interval (int) – How often should we actively look for old connections that should
manually be timed out. Anything less than 1 disables the request
cleanup meaning that all request objects will be kept in memory
until the server is restarted, regardless if the remote side has
dropped the connection or not. Defaults to 5 seconds.

	request_timeout (int) – How long should we wait for the remote side generating the
response for this synchronous operation to come back. Any
connection that has waited longer than request_timeout seconds
will manually be closed. Defaults to 4 minutes.

	request_timeout_status_code (int) – What HTTP status code should be generated when a timeout occurs.
Defaults to 504 Gateway Timeout.

	request_timeout_body (str) – What HTTP body should be returned when a timeout occurs. Defaults
to ‘’.

	noisy (bool) – Defaults to False set to True to make this transport log
verbosely.

	validation_mode (str) – The mode to operate in. Can be ‘strict’ or ‘permissive’. If
‘strict’ then any parameter received that is not listed in
EXPECTED_FIELDS nor in IGNORED_FIELDS will raise an error. If
‘permissive’ then no error is raised as long as all the
EXPECTED_FIELDS are present.

	response_time_down (float) – The maximum time allowed for a response before the service is
considered down

	response_time_degraded (float) – The maximum time allowed for a response before the service is
considered degraded

	credentials (dict) – A dictionary where the from_addr is used for the key lookup and
the returned value should be a dictionary containing the
corresponding username, password and service id.

	outbound_url (str) – The URL to send outbound messages to.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Cellulant

Cellulant Transport

	
exception vumi.transports.cellulant.cellulant.CellulantError

	Bases: vumi.errors.VumiError

Used to log errors specific to the Cellulant transport.

	
class vumi.transports.cellulant.cellulant.CellulantTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

Cellulant USSD (via HTTP) transport.

Cellulant USSD Transport

	
class vumi.transports.cellulant.cellulant_sms.CellulantSmsTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

HTTP transport for Cellulant SMS.

	
CONFIG_CLASS

	alias of CellulantSmsTransportConfig

	
class vumi.transports.cellulant.cellulant_sms.CellulantSmsTransportConfig(config_data, static=False)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransportConfig

Cellulant transport config.

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	web_path (str) – The path to listen for requests on.

	web_port (int) – The port to listen for requests on, defaults to 0.

	web_username (str) – The username to require callers to authenticate with. If None
then no authentication is required. Currently only HTTP Basic
authentication is supported.

	web_password (str) – The password to go with web_username. Must be None if and
only if web_username is None.

	web_auth_domain (str) – The name of authentication domain.

	health_path (str) – The path to listen for downstream health checks on (useful with
HAProxy)

	request_cleanup_interval (int) – How often should we actively look for old connections that should
manually be timed out. Anything less than 1 disables the request
cleanup meaning that all request objects will be kept in memory
until the server is restarted, regardless if the remote side has
dropped the connection or not. Defaults to 5 seconds.

	request_timeout (int) – How long should we wait for the remote side generating the
response for this synchronous operation to come back. Any
connection that has waited longer than request_timeout seconds
will manually be closed. Defaults to 4 minutes.

	request_timeout_status_code (int) – What HTTP status code should be generated when a timeout occurs.
Defaults to 504 Gateway Timeout.

	request_timeout_body (str) – What HTTP body should be returned when a timeout occurs. Defaults
to ‘’.

	noisy (bool) – Defaults to False set to True to make this transport log
verbosely.

	validation_mode (str) – The mode to operate in. Can be ‘strict’ or ‘permissive’. If
‘strict’ then any parameter received that is not listed in
EXPECTED_FIELDS nor in IGNORED_FIELDS will raise an error. If
‘permissive’ then no error is raised as long as all the
EXPECTED_FIELDS are present.

	response_time_down (float) – The maximum time allowed for a response before the service is
considered down

	response_time_degraded (float) – The maximum time allowed for a response before the service is
considered degraded

	credentials (dict) – A dictionary where the from_addr is used for the key lookup and
the returned value should be a dictionary containing the username
and password.

	outbound_url (str) – The URL to send outbound messages to.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

IMImobile Transport

IMIMobile Transport

	
class vumi.transports.imimobile.imimobile_ussd.ImiMobileUssdTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

HTTP transport for USSD with IMImobile in India.

Configuration parameters:

	Parameters:	
	transport_name (str) – The name this transport instance will use to create its queues

	web_path (str) – The HTTP path to listen on.

	web_port (int) – The HTTP port to listen on.

	suffix_to_addrs (dict) – Mappings between url suffixes and to addresses.

	user_terminated_session_message (str) – A regex used to identify user terminated session messages. Default is
‘^Map Dialog User Abort User Reason’.

	user_terminated_session_response (str) – Response given back to the user if the user terminated the session.
Default is ‘Session Ended’.

	redis_manager (dict) – The configuration parameters for connecting to Redis.

	ussd_session_timeout (int) – Number of seconds before USSD session information stored in Redis
expires. Default is 600s.

	
get_to_addr(request)

	Extracts the request url path’s suffix and uses it to obtain the tag
associated with the suffix. Returns a tuple consisting of the tag and
a dict of errors encountered.

	
classmethod ist_to_utc(timestamp)

	Accepts a timestamp in the format [M]M/[D]D/YYYY HH:MM:SS (am|pm) and
in India Standard Time, and returns a datetime object normalized to
UTC time.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Infobip

Infobip Transport

Infobip USSD transport.

	
exception vumi.transports.infobip.infobip.InfobipError

	Bases: vumi.errors.VumiError

Used to log errors specific to the Infobip transport.

	
class vumi.transports.infobip.infobip.InfobipTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

Infobip transport.

Currently only supports the Infobip USSD interface.

Configuration parameters:

	Parameters:	ussd_session_timeout (int) – Number of seconds before USSD session information stored in
Redis expires. Default is 600s.

Excerpt from INFOBIP USSD Gateway to Third-party
Application HTTP/REST/JSON Web Service API:

Third party application provides four methods for session
management. Their parameters are as follows:

	sessionActive (type Boolean) – true if the session is active,
false otherwise. The parameter is mandatory.

	sessionId (type String) – is generated for each started session
and. The parameter is mandatory. exitCode (type Integer) –
defined the status of the session that is complete. All the exit
codes can be found in Table 1. The parameter is mandatory.

	reason (type String) – in case a third-party applications
releases the session before its completion it will contain the
reason for the release. The parameter is used for logging
purposes and is mandatory. msisdn (type String) – of the user
that sent the response to the menu request. The parameter is
mandatory.

	imsi (type String) – of the user that sent the response to the
menu request. The parameter is optional.

	text (type String) – text the user entered in the response. The
parameter is mandatory. shortCode – Short code entered in the
mobile initiated session or by calling start method. The
parameter is optional.

	language (type String)– defines which language will be used for
message text. Used in applications that support
internationalization. The parameter should be set to null if not
used. The parameter is optional.

	optional (type String)– left for future usage scenarios. The
parameter is optional. ussdGwId (type String)– id of the USSD
GW calling the third-party application. This parameter is
optional.

Responses to requests sent from the third-party-applications have
the following parameters:

	ussdMenu (type String)– menu to send as text to the user. The
parameter is mandatory.

	shouldClose (type boolean)– set to true if this is the last
message in this session sent to the user, false if there will be
more. The parameter is mandatory. Please note that the first
message in the session will always be sent as a menu
(i.e. shouldClose will be set to false).

	thirdPartyId (type String)– Id of the third-party application or
server. This parameter is optional.

	responseExitCode (type Integer) – request processing exit
code. Parameter is mandatory.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Integrat

Integrat Transport

	
class vumi.transports.integrat.integrat.IntegratTransport(options, config=None)

	Bases: vumi.transports.base.Transport

Integrat USSD transport over HTTP.

	
setup_transport(*args, **kwargs)

	All transport_specific setup should happen in here.

	
validate_config()

	Transport-specific config validation happens in here.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

MediaEdgeGSM

MediaEdgeGSM Transport

	
class vumi.transports.mediaedgegsm.mediaedgegsm.MediaEdgeGSMTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

HTTP transport for MediaEdgeGSM in Ghana.

	Parameters:	
	web_path (str) – The HTTP path to listen on.

	web_port (int) – The HTTP port

	transport_name (str) – The name this transport instance will use to create its queues

	username (str) – MediaEdgeGSM account username.

	password (str) – MediaEdgeGSM account password.

	outbound_url (str) – The URL to hit for outbound messages that aren’t replies.

	outbound_username (str) – The username for outbound non-reply messages.

	outbound_password (str) – The username for outbound non-reply messages.

	operator_mappings (dict) – A nested dictionary mapping MSISDN prefixes to operator names

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Mediafone Cameroun

Mediafone Cameroun Transport

	
class vumi.transports.mediafonemc.mediafonemc.MediafoneTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

HTTP transport for Mediafone Cameroun.

	Parameters:	
	web_path (str) – The HTTP path to listen on.

	web_port (int) – The HTTP port

	transport_name (str) – The name this transport instance will use to create its queues

	username (str) – Mediafone account username.

	password (str) – Mediafone account password.

	outbound_url (str) – The URL to send outbound messages to.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

MTECH USSD

MTECH USSD Transport

	
class vumi.transports.mtech_ussd.mtech_ussd.MtechUssdTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

MTECH USSD transport.

Configuration parameters:

	Parameters:	
	transport_name (str) – The name this transport instance will use to create its queues

	ussd_session_timeout (int) – Number of seconds before USSD session information stored in
Redis expires. Default is 600s.

	web_path (str) – The HTTP path to listen on.

	web_port (int) – The HTTP port to listen on.

	NOTE: We currently only support free-text USSD, not menus.

	At the time of writing, vumi has no suitable message format for
specifying USSD menus. This may change in the future.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Safaricom

Safaricom Transport

	
class vumi.transports.safaricom.safaricom.SafaricomTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

HTTP transport for USSD with Safaricom in Kenya.

	Parameters:	
	web_path (str) – The HTTP path to listen on.

	web_port (int) – The HTTP port

	transport_name (str) – The name this transport instance will use to create its queues

	redis (dict) – The configuration parameters for connecting to Redis.

	ussd_session_timeout (int) – The number of seconds after which a timeout is forced on a transport
level.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Opera

Opera Transport

	
exception vumi.transports.opera.opera.BadRequestError

	Bases: exceptions.Exception

An exception we can throw while parsing a request to return a 400 response.

	
class vumi.transports.opera.opera.OperaTransport(options, config=None)

	Bases: vumi.transports.base.Transport

Opera transport.

See https://dragon.sa.operatelecom.com:1089/ for documentation
on the Opera XML-RPC interface.

Configuration options:

	Parameters:	
	message_id_lifetime (int) – Seconds message ids should be kept for before expiring. Once
an id expires, delivery reports can no longer be associated
with the original message id. Default is one week.

	web_receipt_path (str) – Path part of JSON reply URL (should match value given to Opera).
E.g. /api/v1/sms/opera/receipt.json

	web_receive_path (str) – Path part of XML reply URL (should match value given to Opera).
E.g. /api/v1/sms/opera/receive.xml

	web_port (int) – Port the transport listens to for responses from Opera.
Affects both web_receipt_path and web_receive_path.

	url (str) – Opera XML-RPC gateway. E.g.
https://dragon.sa.operatelecom.com:1089/Gateway

	channel (str) – Opera channel number.

	password (str) – Opera password.

	service (str) – Opera service number.

	max_segments (int) – Maximum number of segments to allow messages to be broken
into. Default is 9. Minimum is 1. Maximum is 9. Note: Opera’s
own default is 1. This transport defaults to 9 to minimise the
possibility of message sends failing.

	
get_message_id_for_identifier(identifier)

	Get an internal message id for a given identifier

	Parameters:	identifier (str) – The message id we originally got from Opera when the message
was accepted for delivery.

	
get_transport_url(suffix='')

	Get the URL for the HTTP resource. Requires the worker to be started.

This is mostly useful in tests, and probably shouldn’t be used
in non-test code, because the API might live behind a load
balancer or proxy.

	
handle_outbound_message_failure(*args, **kwargs)

	Decide what to do on certain failure cases.

	
set_message_id_for_identifier(identifier, message_id)

	Link an external message id, the identifier, to an internal
message id for MAX_ID_LIFETIME amount of seconds

	Parameters:	
	identifier (str) – The message id we get back from Opera

	message_id (str) – The internal message id that was used when the message was sent.

	
validate_config()

	Transport-specific config validation happens in here.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Vas2Nets

A WASP providing connectivity in Nigeria via an HTTP API.

Vas2nets Transport

	
class vumi.transports.vas2nets.Vas2NetsTransport(options, config=None)

	

Notes

Valid single byte characters:

string.ascii_lowercase, # a-z
string.ascii_uppercase, # A-Z
'0123456789',
'äöüÄÖÜàùòìèé§Ññ£$@',
' ',
'/?!#%&()*+,-:;<=>.',
'\n\r'

Valid double byte characters, will limit SMS to max length of 70
instead of 160 if used:

'|{}[]€\~^'

If any characters are published that aren’t in this list the transport
will raise a Vas2NetsEncodingError. If characters are published that
are in the double byte set the transport will print warnings in the
log.

Example configuration

transport_name: vas2nets
web_receive_path: /api/v1/sms/vas2nets/receive/
web_receipt_path: /api/v1/sms/vas2nets/receipt/
web_port: 8123

url: <provided by vas2nets>
username: <provided by vas2nets>
password: <provided by vas2nets>
owner: <provided by vas2nets>
service: <provided by vas2nets>
subservice: <provided by vas2nets>

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

Vodacom Messaging

Vodacom Messaging Transport

	
class vumi.transports.vodacom_messaging.vodacom_messaging.VodacomMessagingTransport(options, config=None)

	Bases: vumi.transports.httprpc.httprpc.HttpRpcTransport

Vodacom Messaging USSD over HTTP transport.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Transports

MTN Nigeria

MTN Nigeria USSD Transport

	
class vumi.transports.mtn_nigeria.mtn_nigeria_ussd.MtnNigeriaUssdTransport(options, config=None)

	Bases: vumi.transports.base.Transport

USSD transport for MTN Nigeria.

This transport connects as a TCP client and sends messages using a
custom protocol whose packets consist of binary headers plus an XML body.

	
CONFIG_CLASS

	alias of MtnNigeriaUssdTransportConfig

	
class vumi.transports.mtn_nigeria.mtn_nigeria_ussd.MtnNigeriaUssdTransportConfig(config_data, static=False)

	Bases: vumi.transports.base.TransportConfig

MTN Nigeria USSD transport configuration.

Configuration options:

	Parameters:	
	amqp_prefetch_count (int) – The number of messages fetched concurrently from each AMQP queue
by each worker instance.

	transport_name (str) – The name this transport instance will use to create its queues.

	publish_status (bool) – Whether status messages should be published by the transport

	server_hostname (str) – Hostname of the server the transport’s client should connect to.

	server_port (int) – Port that the server is listening on.

	username (str) – The username for this transport.

	password (str) – The password for this transport.

	application_id (str) – An application ID required by MTN Nigeria for client
authentication.

	enquire_link_interval (int) – The interval (in seconds) between enquire links sent to the server
to check whether the connection is alive and well.

	timeout_period (int) – How long (in seconds) after sending an enquire link request the
client should wait for a response before timing out. NOTE: The
timeout period should not be longer than the enquire link interval

	user_termination_response (str) – Response given back to the user if the user terminated the
session.

	redis_manager (dict) – Parameters to connect to Redis with

	session_timeout_period (int) – Max length (in seconds) of a USSD session

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

Dispatchers

Dispatchers are vumi workers that route messages between sets of
transports and sets of application workers.

Vumi transports and application workers both have a single endpoint
on which messages are sent and received (the name of the endpoint is
given by the transport_name configuration option). Connecting sets
of transports and applications requires a kind of worker with
multiple endpoints. This class of workers is the dispatcher.

Examples of use cases for dispatchers:

	A single application that sends and receives both SMSes and XMPP
messages.

	A single application that sends and receives SMSes in multiple
countries using a different transport in each.

	A single SMPP transport that sends and receives SMSes on behalf of
multiple applications.

	Multiple applications that all send and receive SMSes in multiple
countries using a shared set of SMPP transports.

Vumi provides a pluggable dispatch worker BaseDispatchWorker
that may be extended by much simpler routing classes that implement
only the logic for routing messages (see Routers). The
pluggable dispatcher handles setting up endpoints for all the
transports and application workers the dispatcher communicates with.

[image: \tikzstyle{place}=[double copy shadow, shape=rounded rectangle, thick, font=\scriptsize, inner sep=0pt, outer sep=0.3ex, minimum height=1.5em, minimum width=8em, node distance=8em,]; \tikzstyle{link}=[<->, >=stealth, font=\scriptsize, line width=0.2ex, auto,]; \definecolor{darkgreen}{rgb}{0,0.5,0}; \definecolor{darkblue}{rgb}{0,0,0.5}; \tikzstyle{route}=[sloped,midway,above=0.1em]; \tikzstyle{transport_name}=[draw=darkgreen]; \tikzstyle{exposed_name}=[draw=darkblue]; \tikzstyle{transport}=[draw=darkgreen!50,fill=darkgreen!20] \tikzstyle{application}=[draw=darkblue!50,fill=darkblue!20] \tikzstyle{dispatcher}=[draw=black!50,fill=black!20] \node[place,dispatcher] (dispatcher) {Dispatcher}; \node[place,transport] (smpp_transport) [above left=of dispatcher] {SMPP Transport}; \node[place,transport] (xmpp_transport) [below left=of dispatcher] {XMPP Transport}; \node[place,application] (my_application) [right=of dispatcher] {My Application}; \draw[link,transport_name] (smpp_transport) to node [route] {smpp_transport} (dispatcher); \draw[link,transport_name] (xmpp_transport) to node [route] {xmpp_transport} (dispatcher); \draw[link,exposed_name] (my_application) to node [route] {my_application} (dispatcher);]

A simple dispatcher configuration. Boxes represent workers. Edges are routing links between workers. Edges are labelled with endpoint names (i.e. transport_names).

A simple BaseDispatchWorker YAML configuration file for the
example above might look like:

dispatcher config

router_class: vumi.dispatchers.SimpleDispatchRouter

transport_names:
 - smpp_transport
 - xmpp_transport

exposed_names:
 - my_application

router config

route_mappings:
 smpp_transport: my_application
 xmpp_transport: my_application

The router_class, transport_names and exposed_names sections are
all configuration for the BaseDispatchWorker itself and will
be present in all dispatcher configurations:

	router_class gives the full Python path to the class
implementing the routing logic.

	transport_names is the list of transport endpoints the dispatcher
should receive and publish messages on.

	exposed_names is the list of application endpoints the dispatcher
should receive and publish messages on.

The last section, routing_mappings, is specific to the router class
used (i.e. vumi.dispatchers.SimpleDispatchRouter). It lists
the application endpoint that messages and events from each transport
should be sent to. In this simple example message from both transports
are sent to the same application worker.

Other router classes will have different router configuration
options. These are described in Builtin routers.

Routers

Router classes implement dispatching of inbound and outbound messages
and events. Inbound messages and events come from transports and are
typically dispatched to an application. Outbound messages come from
applications and are typically dispatched to a transport.

Many routers follow a simple pattern:

	inbound messages are routed using custom routing logic.

	events are routed towards the same application the associated
message was routed to.

	outbound messages that are replies are routed towards the
transport that the original message came from.

	outbound messages that are not replies are routed based on
additional information provided by the application (in simple setups
its common for the application to simply provide the name of the
transport the message should be routed to).

You can read more about the routers Vumi provides and about how to
write your own router class in the following sections:

	Builtin routers

	Implementing your own router

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Dispatchers

Builtin routers

Vumi ships with a small set of generically useful routers:

Vumi routers

	SimpleDispatchRouter

	TransportToTransportRouter

	ToAddrRouter

	FromAddrMultiplexRouter

	UserGroupingRouter

	ContentKeywordRouter

SimpleDispatchRouter

	
class vumi.dispatchers.SimpleDispatchRouter(dispatcher, config)

	Simple dispatch router that maps transports to apps.

Configuration options:

	Parameters:	
	route_mappings (dict) – A map of transport_names to exposed_names. Inbound
messages and events received from a given transport are
dispatched to the application attached to the corresponding
exposed name.

	transport_mappings (dict) – An optional re-mapping of
transport_names to transport_names. By default, outbound
messages are dispatched to the transport attached to the
endpoint with the same name as the transport name given in
the message. If a transport name is present in this
dictionary, the message is instead dispatched to the new
transport name given by the re-mapping.

TransportToTransportRouter

	
class vumi.dispatchers.TransportToTransportRouter(dispatcher, config)

	Simple dispatch router that connects transports to other
transports.

Note

Connecting transports to one results in event messages being
discarded since transports cannot receive events. Outbound
messages never need to be dispatched because transports only
send inbound messages.

Configuration options:

	Parameters:	route_mappings (dict) – A map of transport_names to transport_names. Inbound
messages received from a transport are sent as outbound
messages to the associated transport.

ToAddrRouter

	
class vumi.dispatchers.ToAddrRouter(dispatcher, config)

	Router that dispatches based on msg to_addr.

	Parameters:	toaddr_mappings (dict) – Mapping from application transport names to regular
expressions. If a message’s to_addr matches the given
regular expression the message is sent to the applications
listening on the given transport name.

FromAddrMultiplexRouter

	
class vumi.dispatchers.FromAddrMultiplexRouter(dispatcher, config)

	Router that multiplexes multiple transports based on msg from_addr.

This router is intended to be used to multiplex a pool of transports that
each only supports a single external address, and present them to
applications (or downstream dispatchers) as a single transport that
supports multiple external addresses. This is useful for multiplexing
vumi.transports.xmpp.XMPPTransport instances, for example.

Note

This router rewrites transport_name in both directions. Also, only
one exposed name is supported.

Configuration options:

	Parameters:	fromaddr_mappings (dict) – Mapping from message from_addr to transport_name.

UserGroupingRouter

	
class vumi.dispatchers.UserGroupingRouter(dispatcher, config)

	Router that dispatches based on msg from_addr. Each unique
from_addr is round-robin assigned to one of the defined
groups in group_mappings. All messages from that
from_addr are then routed to the app assigned to that group.

Useful for A/B testing.

Configuration options:

	Parameters:	
	group_mappings (dict) – Mapping of group names to transport_names.
If a user is assigned to a given group the
message is sent to the application listening
on the given transport_name.

	dispatcher_name (str) – The name of the dispatcher, used internally as
the prefix for Redis keys.

ContentKeywordRouter

	
class vumi.dispatchers.ContentKeywordRouter(dispatcher, config)

	Router that dispatches based on the first word of the message
content. In the context of SMSes the first word is sometimes called
the ‘keyword’.

	Parameters:	
	keyword_mappings (dict) – Mapping from application transport names to simple keywords.
This is purely a convenience for constructing simple routing
rules. The rules generated from this option are appened to
the of rules supplied via the rules option.

	rules (list) – A list of routing rules. A routing rule is a dictionary. It
must have app and keyword keys and may contain to_addr
and prefix keys. If a message’s first word matches a given
keyword, the message is sent to the application listening on
the transport name given by the value of app. If a ‘to_addr’
key is supplied, the message to_addr must also match the
value of the ‘to_addr’ key. If a ‘prefix’ is supplied, the
message from_addr must start with the value of the
‘prefix’ key.

	fallback_application (str) – Optional application transport name to forward inbound messages
that match no rule to. If omitted, unrouted inbound messages
are just logged.

	transport_mappings (dict) – Mapping from message from_addr values to transports names.
If a message’s from_addr matches a given from_addr, the
message is sent to the associated transport.

	expire_routing_memory (int) – Time in seconds before outbound message’s ids are expired from
the redis routing store. Outbound message ids are stored along
with the transport_name the message came in on and are used to
route events such as acknowledgements and delivery reports
back to the application that sent the outgoing
message. Default is seven days.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Dispatchers

Implementing your own router

A routing class publishes message on behalf of a dispatch worker. To
do so it must provide three dispatch functions – one for inbound user
messages, one for outbound user messages and one for events
(e.g. delivery reports and acknowledgements). Failure messages are not
routed via dispatchers and are typically sent directly to a failure
worker. The receiving of messages and events is handled by the
dispatcher itself.

A dispatcher provides three dictionaires of publishers as attributes:

	exposed_publisher – publishers for sending inbound user messages
to applications attached to the dispatcher.

	exposed_event_publisher – publishers for sending events to
applications.

	
	transport_publisher – publishers for sending outbound user

	messages to transports attached to the dispatcher.

Each of these dictionaries is keyed by endpoint name. The keys for
exposed_publisher and exposed_event_publisher are the endpoints
listed in the exposed_names configuration option passed to the
dispatcher. The keys for transport_publisher are the endpoints
listed in the transport_names configuration option. Routing classes
publish messages by calling the publish_message() method on one
of the publishers in these three dictionaries.

Routers are required to have the same interface as the
BaseDipatcherRouter class which is described below.

	
class vumi.dispatchers.BaseDispatchRouter(dispatcher, config)

	Base class for dispatch routing logic.

This is a convenient definition of and set of common functionality
for router classes. You need not subclass this and should not
instantiate this directly.

The __init__() method should take exactly the following
options so that your class can be instantiated from configuration
in a standard way:

	Parameters:	
	dispatcher (vumi.dispatchers.BaseDispatchWorker) – The dispatcher this routing class is part of.

	config (dict) – The configuration options passed to the dispatcher.

If you are subclassing this class, you should not override
__init__(). Custom setup should be done in
setup_routing() instead.

	
setup_routing()

	Perform setup required for router.

	Return type:	Deferred or None

	Returns:	May return a Deferred that is called when setup is
complete

	
teardown_routing()

	Perform teardown required for router.

	Return type:	Deferred or None

	Returns:	May return a Deferred that is called when teardown is
complete

	
dispatch_inbound_message(msg)

	Dispatch an inbound user message to a publisher.

	Parameters:	msg (vumi.message.TransportUserMessage) – Message to dispatch.

	
dispatch_inbound_event(msg)

	Dispatch an event to a publisher.

	Parameters:	msg (vumi.message.TransportEvent) – Message to dispatch.

	
dispatch_outbound_message(msg)

	Dispatch an outbound user message to a publisher.

	Parameters:	msg (vumi.message.TransportUserMessage) – Message to dispatch.

Example of a simple router implementation from
vumi.dispatcher.base:

class SimpleDispatchRouter(BaseDispatchRouter):
 """Simple dispatch router that maps transports to apps.

 Configuration options:

 :param dict route_mappings:
 A map of *transport_names* to *exposed_names*. Inbound
 messages and events received from a given transport are
 dispatched to the application attached to the corresponding
 exposed name.

 :param dict transport_mappings: An optional re-mapping of
 transport_names to *transport_names*. By default, outbound
 messages are dispatched to the transport attached to the
 endpoint with the same name as the transport name given in
 the message. If a transport name is present in this
 dictionary, the message is instead dispatched to the new
 transport name given by the re-mapping.
 """

 def dispatch_inbound_message(self, msg):
 names = self.config['route_mappings'][msg['transport_name']]
 for name in names:
 # copy message so that the middleware doesn't see a particular
 # message instance multiple times
 self.dispatcher.publish_inbound_message(name, msg.copy())

 def dispatch_inbound_event(self, msg):
 names = self.config['route_mappings'][msg['transport_name']]
 for name in names:
 # copy message so that the middleware doesn't see a particular
 # message instance multiple times
 self.dispatcher.publish_inbound_event(name, msg.copy())

 def dispatch_outbound_message(self, msg):
 name = msg['transport_name']
 name = self.config.get('transport_mappings', {}).get(name, name)
 if name in self.dispatcher.transport_publisher:
 self.dispatcher.publish_outbound_message(name, msg)
 else:
 log.error(DispatcherError(
 'Unknown transport_name: %s, discarding %r' % (
 name, msg.payload)))

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

Middleware

Middleware provides additional functionality that can be attached to
any existing transport, application or dispatcher worker. For
example, middleware could log inbound and outbound messages, store
delivery reports in a database or modify a message.

Attaching middleware to your worker is fairly straight forward. Just
extend your YAML configuration file with lines like:

middleware:
 - mw1: vumi.middleware.LoggingMiddleware

mw1:
 log_level: info

The middleware section contains a list of middleware items. Each
item consists of a name (e.g. mw1) for that middleware instance
and a class (e.g. vumi.middleware.LoggingMiddleware)
which is the full Python path to the class implementing the
middleware. A name can be any string that doesn’t clash with another
top-level configuration option – it’s just used to look up the
configuration for the middleware itself.

If a middleware class doesn’t require any additional parameters, the
configuration section (i.e. the mw1: debug_level ... in the example
above) may simply be omitted.

Multiple layers of middleware may be specified as follows:

middleware:
 - mw1: vumi.middleware.LoggingMiddleware
 - mw2: mypackage.CustomMiddleware

You can think of the layers of middleware sitting on top of the
underlying transport or application worker. Messages being consumed by
the worker enter from the top and are processed by the middleware in
the order you have defined them and eventually reach the worker at the
bottom. Messages published by the worker start at the bottom and
travel up through the layers of middleware before finally exiting the
middleware at the top.

Further reading:

	Builtin middleware

	Implementing your own middleware

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Middleware

Builtin middleware

Vumi ships with a small set of generically useful middleware:

Vumi middleware

	AddressTranslationMiddleware

	LoggingMiddleware

	TaggingMiddleware

	StoringMiddleware

AddressTranslationMiddleware

Overwrites to_addr and from_addr values based on a simple
mapping. Useful for debugging and testing.

	
class vumi.middleware.address_translator.AddressTranslationMiddleware(name, config, worker)

	Address translation middleware.

Used for mapping a set of to_addr values in outbound messages to
new values. Inbound messages have the inverse mapping applied to
their from_addr values.. This is useful during debugging,
testing and development.

For example, you might want to make your Gmail address look like
an MSISDN to an application to test SMS address handling, for
instance. Or you might want to have an outgoing SMS end up at your
Gmail account.

Configuration options:

	Parameters:	outbound_map (dict) – Mapping of old to_addr values to new to_addr values for
outbound messages. Inbound messages have the inverse mapping
applied to from_addr values. Addresses not in this dictionary
are not affected.

LoggingMiddleware

Logs messages, events and failures as they enter or leave a transport.

	
class vumi.middleware.logging.LoggingMiddleware(name, config, worker)

	Middleware for logging messages published and consumed by
transports and applications.

Optional configuration:

	Parameters:	
	log_level (string) – Log level from vumi.log to log inbound and outbound
messages and events at. Default is info.

	failure_log_level (string) – Log level from vumi.log to log failure messages at.
Default is error.

TaggingMiddleware

	
class vumi.middleware.tagger.TaggingMiddleware(name, config, worker)

	Transport middleware for adding tag names to inbound messages and
for adding additional parameters to outbound messages based on
their tag.

Transports that wish to eventually have incoming messages
associated with an existing message batch by
vumi.application.MessageStore or via
vumi.middleware.StoringMiddleware need to ensure that
incoming messages are provided with a tag by this or some other
middleware.

Configuration options:

	Parameters:	
	incoming (dict) –
	addr_pattern (string): Regular expression matching the
to_addr of incoming messages. Incoming messages with to_addr
values that don’t match the pattern are not modified.

	tagpool_template (string): Template for producing tag pool
from successful matches of addr_pattern. The string is
expanded using match.expand(tagpool_template).

	tagname_template (string): Template for producing tag name
from successful matches of addr_pattern. The string is
expanded using match.expand(tagname_template).

	outgoing (dict) –
	tagname_pattern (string): Regular expression matching
the tag name of outgoing messages. Outgoing messages with
tag names that don’t match the pattern are not
modified. Note: The tag pool the tag belongs to is not
examined.

	msg_template (dict): A dictionary of additional key-value
pairs to add to the outgoing message payloads whose tag
matches tag_pattern. Values which are strings are
expanded using match.expand(value). Values which are
dicts are recursed into. Values which are neither are left
as is.

StoringMiddleware

	
class vumi.middleware.message_storing.StoringMiddleware(name, config, worker)

	Middleware for storing inbound and outbound messages and events.

Failures are not stored currently because these are typically
stored by vumi.transports.FailureWorker instances.

Messages are always stored. However, in order for messages to be
associated with a particular batch_id (
see vumi.application.MessageStore) a batch needs to be
created in the message store (typically by an application worker
that initiates sending outbound messages) and messages need to be
tagged with a tag associated with the batch (typically by an
application worker or middleware such as
vumi.middleware.TaggingMiddleware).

Configuration options:

	Parameters:	
	store_prefix (string) – Prefix for message store keys in key-value store.
Default is ‘message_store’.

	redis_manager (dict) – Redis configuration parameters.

	riak_manager (dict) – Riak configuration parameters. Must contain at least
a bucket_prefix key.

	store_on_consume (bool) – True to store consumed messages as well as published ones,
False to store only published messages.
Default is True.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Middleware

Implementing your own middleware

A middleware class provides four handler functions, one for processing
each of the four kinds of messages transports, applications and
dispatchers typically send and receive (i.e. inbound user messages,
outbound user messages, event messages and failure messages).

Although transport and application middleware potentially both provide
the same sets of handlers, the two make use of them in slightly
different ways. Inbound messages and events are published by
transports but consumed by applications while outbound messages are
opposite. Failure messages are not seen by applications at all and are
allowed only so that certain middleware may be used on both transports
and applications. Dispatchers both consume and publish all kinds of
messages except failure messages.

Middleware is required to have the same interface as the
BaseMiddleware class which is described below. Two
subclasses, TransportMiddleware and
ApplicationMiddleware, are provided but subclassing from
these is just a hint as to whether a piece of middleware is intended
for use on transports or applications (middleware for use on both or
for dispatchers may inherit from BaseMiddleware). The two
subclasses provide identical interfaces and no extra functionality.

	
class vumi.middleware.BaseMiddleware(name, config, worker)

	Common middleware base class.

This is a convenient definition of and set of common functionality
for middleware classes. You need not subclass this and should not
instantiate this directly.

The __init__() method should take exactly the following
options so that your class can be instantiated from configuration
in a standard way:

	Parameters:	
	name (string) – Name of the middleware.

	config (dict) – Dictionary of configuraiton items.

	worker (vumi.service.Worker) – Reference to the transport or application being wrapped by
this middleware.

If you are subclassing this class, you should not override
__init__(). Custom setup should be done in
setup_middleware() instead. The config class can be overidden by
replacing the config_class class variable.

	
CONFIG_CLASS

	alias of BaseMiddlewareConfig

	
setup_middleware()

	Any custom setup may be done here.

	Return type:	Deferred or None

	Returns:	May return a deferred that is called when setup is
complete.

	
teardown_middleware()

	“Any custom teardown may be done here

	Return type:	Deferred or None

	Returns:	May return a Deferred that is called when teardown is
complete

	
handle_consume_inbound(message, connector_name)

	Called when an inbound transport user message is consumed.

The other methods listed below all function in the same way. Only the
kind and direction of the message being processed differs.

	handle_publish_inbound()

	handle_consume_outbound()

	handle_publish_outbound()

	handle_consume_event()

	handle_publish_event()

	handle_failure()

By default, the handle_consume_* and handle_publish_* methods
call their handle_* equivalents.

	Parameters:	
	message (vumi.message.TransportUserMessage) – Inbound message to process.

	connector_name (string) – The name of the connector the message is being received on or sent
to.

	Return type:	vumi.message.TransportUserMessage

	Returns:	The processed message.

	
handle_publish_inbound(message, connector_name)

	Called when an inbound transport user message is published.

See handle_consume_inbound().

	
handle_inbound(message, connector_name)

	Default handler for published and consumed inbound messages.

See handle_consume_inbound().

	
handle_consume_outbound(message, connector_name)

	Called when an outbound transport user message is consumed.

See handle_consume_inbound().

	
handle_publish_outbound(message, connector_name)

	Called when an outbound transport user message is published.

See handle_consume_inbound().

	
handle_outbound(message, connector_name)

	Default handler for published and consumed outbound messages.

See handle_consume_inbound().

	
handle_consume_event(event, connector_name)

	Called when a transport event is consumed.

See handle_consume_inbound().

	
handle_publish_event(event, connector_name)

	Called when a transport event is published.

See handle_consume_inbound().

	
handle_event(event, connector_name)

	Default handler for published and consumed events.

See handle_consume_inbound().

	
handle_consume_failure(failure, connector_name)

	Called when a failure message is consumed.

See handle_consume_inbound().

	
handle_publish_failure(failure, connector_name)

	Called when a failure message is published.

See handle_consume_inbound().

	
handle_failure(failure, connector_name)

	Called to process a failure message (
vumi.transports.failures.FailureMessage).

See handle_consume_inbound().

Example of a simple middleware implementation from
vumi.middleware.logging:

class LoggingMiddleware(BaseMiddleware):
 """Middleware for logging messages published and consumed by
 transports and applications.

 Optional configuration:

 :param string log_level:
 Log level from :mod:`vumi.log` to log inbound and outbound
 messages and events at. Default is `info`.
 :param string failure_log_level:
 Log level from :mod:`vumi.log` to log failure messages at.
 Default is `error`.
 """
 CONFIG_CLASS = LoggingMiddlewareConfig

 def setup_middleware(self):
 log_level = self.config.log_level
 self.message_logger = getattr(log, log_level)
 failure_log_level = self.config.failure_log_level
 self.failure_logger = getattr(log, failure_log_level)

 def _log(self, direction, logger, msg, connector_name):
 logger("Processed %s message for %s: %s" % (
 direction, connector_name, msg.to_json()))
 return msg

 def handle_inbound(self, message, connector_name):
 return self._log(
 "inbound", self.message_logger, message, connector_name)

 def handle_outbound(self, message, connector_name):
 return self._log(
 "outbound", self.message_logger, message, connector_name)

 def handle_event(self, event, connector_name):
 return self._log("event", self.message_logger, event, connector_name)

 def handle_failure(self, failure, connector_name):
 return self._log(
 "failure", self.failure_logger, failure, connector_name)

How your middleware is used inside Vumi

While writing complex middleware, it may help to understand how a
middleware class is used by Vumi transports and applications.

When a transport or application is started a list of middleware to
load is read from the configuration. An instance of each piece of
middleware is created and then setup_middleware() is called on
each middleware object in order. If any call to
setup_middleware() returns a Deferred, setup will
continue after the deferred has completed.

Once the middleware has been setup it is combined into a
MiddlewareStack. A middleware stack has two important methods
apply_consume() and apply_publish() The former is used
when a message is being consumed and applies the appropriate handlers
in the order listed in the configuration file. The latter is used when
a message is being published and applies the handlers in the
reverse order.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

Metrics

Metrics are a means for workers to publish statistics about their
operations for real-time plotting and later analysis. Vumi provides
built-in support for publishing metric values to Carbon (the storage
engine used by Graphite [http://graphite.wikidot.com/]).

Using metrics from a worker

The set of metrics a worker wishes to plublish are managed via a
MetricManager instance. The manager acts both as a container
for the set of metrics and the publisher that pushes metric values out
via AMQP.

Example:

class MyWorker(Worker):

 def startWorker(self, config):
 self.metrics = yield self.start_publisher(MetricManager,
 "myworker.")
 self.metrics.register(Metric("a.value"))
 self.metrics.register(Count("a.count"))

In the example above a MetricManager publisher is
started. All its metric names with be prefixed with myworker.. Two
metrics are registered – a.value whose values will be averaged and
a.count whose values will be summed. Later, the worker may set the
metric values like so:

self.metrics["a.value"].set(1.23)
self.metrics["a.count"].inc()

	
class vumi.blinkenlights.metrics.MetricManager(prefix, publish_interval=5, on_publish=None, publisher=None)

	Utility for creating and monitoring a set of metrics.

	Parameters:	
	prefix (str) – Prefix for the name of all metrics registered with this manager.

	publish_interval (int in seconds) – How often to publish the set of metrics.

	on_publish (f(metric_manager)) – Function to call immediately after metrics after published.

	
oneshot(metric, value)

	Publish a single value for the given metric.

	Parameters:	
	metric (Metric) – Metric object to register. Will have the manager’s prefix
added to its name.

	value (float) – The value to publish for the metric.

	
publish_metrics()

	Publish all waiting metrics.

	
register(metric)

	Register a new metric object to be managed by this metric set.

A metric can be registered with only one metric set.

	Parameters:	metric (Metric) – Metric object to register. The metric will have its .manage()
method called with this manager as the manager.

	Return type:	For convenience, returns the metric passed in.

	
start(channel)

	Start publishing metrics in a loop.

	
start_polling()

	Start the metric polling and publishing task.

	
stop()

	Stop publishing metrics.

	
stop_polling()

	Stop the metric polling and publishing task.

Metrics

A Metric object publishes floating point values under a
metric name. The name is created by combining the prefix from a
metric manager with the suffix provided when the metric is
constructed. A metric may only be registered with a single
MetricManager.

When a metric value is set the value is stored in an internal list
until the MetricManager polls the metric for values and
publishes them.

A metric includes a list of aggregation functions to request that
the metric aggregation workers apply (see later sections). Each metric
class has a default list of aggregators but this may be overridden when
a metric is created.

	
class vumi.blinkenlights.metrics.Metric(name, aggregators=None)

	Simple metric.

Values set are collected and polled periodically by the metric
manager.

	Parameters:	
	name (str) – Name of this metric. Will be appened to the
MetricManager prefix when this metric
is published.

	aggregators (list of aggregators, optional) – List of aggregation functions to request
eventually be applied to this metric. The
default is to average the value.

Examples:

>>> mm = MetricManager('vumi.worker0.')
>>> my_val = mm.register(Metric('my.value'))
>>> my_val.set(1.5)
>>> my_val.name
'my.value'

	
DEFAULT_AGGREGATORS = [<vumi.blinkenlights.metrics.Aggregator object at 0x7fcaa8d446d0>]

	Default aggregators are [AVG]

	
manage(manager)

	Called by MetricManager when this metric is registered.

	
poll()

	Called periodically by the MetricManager.

	
set(value)

	Append a value for later polling.

	
class vumi.blinkenlights.metrics.Count(name, aggregators=None)

	Bases: vumi.blinkenlights.metrics.Metric

A simple counter.

Examples:

>>> mm = MetricManager('vumi.worker0.')
>>> my_count = mm.register(Count('my.count'))
>>> my_count.inc()

	
DEFAULT_AGGREGATORS = [<vumi.blinkenlights.metrics.Aggregator object at 0x7fcaa8d44690>]

	Default aggregators are [SUM]

	
inc()

	Increment the count by 1.

	
class vumi.blinkenlights.metrics.Timer(*args, **kws)

	Bases: vumi.blinkenlights.metrics.Metric

A metric that records time spent on operations.

Examples:

>>> mm = MetricManager('vumi.worker0.')
>>> my_timer = mm.register(Timer('hard.work'))

Using the timer as a context manager:

>>> with my_timer.timeit():
>>> process_data()

Using the timer without a context manager:

>>> event_timer = my_timer.timeit()
>>> event_timer.start()
>>> d = process_other_data()
>>> d.addCallback(lambda r: event_timer.stop())

Note that timers returned by timeit may only have start and stop
called on them once (and only in that order).

Note

Using .start() or .stop() directly or via using the
Timer instance itself as a context manager is
deprecated because they are not re-entrant and it’s easy to
accidentally overlap multiple calls to .start() and .stop() on
the same Timer instance (e.g. by letting the reactor run in
between).

All applications should be updated to use .timeit().

Deprecated use of .start() and .stop():

>>> my_timer.start()
>>> try:
>>> process_other_data()
>>> finally:
>>> my_timer.stop()

Deprecated use of .start() and .stop() via using the
Timer itself as a context manager:

>>> with my_timer:
>>> process_more_data()

	
DEFAULT_AGGREGATORS = [<vumi.blinkenlights.metrics.Aggregator object at 0x7fcaa8d446d0>]

	Default aggregators are [AVG]

Aggregation functions

Metrics declare which aggregation functions they wish to have applied
but the actual aggregation is performed by aggregation workers. All
values sent during an aggregation interval are aggregated into a
single new value.

Aggregation fulfils two primary purposes:

	To combine metrics from multiple workers into a single aggregated
value (e.g. to determine the average time taken or total number of
requests processed across multiple works).

	To produce metric values at fixed time intervals (as is commonly
required by metric storage backends such as Graphite [http://graphite.wikidot.com/] and RRD Tool [http://oss.oetiker.ch/rrdtool/]).

The aggregation functions currently available are:

	SUM – returns the sum of the supplied values.

	AVG – returns the arithmetic mean of the supplied values.

	MIN – returns the minimum value.

	MAX – returns the maximum value.

All aggregation functions return the value 0.0 if there are no values
to aggregate.

New aggregators may be created by instantiating the Aggregator
class.

Note

The aggregator must be instantiated in both the process that
generates the metric (usually a worker) and the process that
performs the aggregation (usually an aggregation worker).

	
class vumi.blinkenlights.metrics.Aggregator(name, func)

	Registry of aggregate functions for metrics.

	Parameters:	
	name (str) – Short name for the aggregator.

	func (f(list of values) -> float) – The aggregation function. Should return a default value
if the list of values is empty (usually this default is 0.0).

Metrics aggregation system

The metric aggregation system consists of MetricTimeBucket
and MetricAggregator workers.

The MetricTimeBucket workers pull metrics messages from the
vumi.metrics exchange and publish them on the vumi.metrics.buckets
exchange under a routing key specific to the MetricAggregator
which should process them. Once sufficient time has passed for all
metrics for a specific time period (a.k.a. time bucket) to have
arrived at the aggregator, the requested aggregation functions are
applied and the resulting aggregated metrics are published to the
vumi.metrics.aggregates exchange.

A typical metric aggregation setup might consist of the following
workers:
* 2 MetricTimeBucket workers
* 3 MetricAggregator workers
* a final metric collector, e.g. GraphiteMetricsCollector.

A shell script to start-up such a setup might be:

#!/bin/bash
BUCKET_OPTS="--worker_class=vumi.blinkenlights.MetricTimeBucket \
--set-option=buckets:3 --set-option=bucket_size:5"

AGGREGATOR_OPTS="--worker_class=vumi.blinkenlights.MetricAggregator \
--set-option=bucket_size:5"

GRAPHITE_OPTS="--worker_class=vumi.blinkenlights.GraphiteMetricsCollector"

twistd -n vumi_worker $BUCKET_OPTS &
twistd -n vumi_worker $BUCKET_OPTS &

twistd -n vumi_worker $AGGREGATOR_OPTS --set-option=bucket:0 &
twistd -n vumi_worker $AGGREGATOR_OPTS --set-option=bucket:1 &
twistd -n vumi_worker $AGGREGATOR_OPTS --set-option=bucket:2 &

twistd -n vumi_worker $GRAPHITE_OPTS &

Publishing to Graphite

The GraphiteMetricsCollector collects aggregate metrics
(produced by the metrics aggregators) and publishes them to Carbon
(Graphite’s metric collection package) over AMQP.

You can read about installing a configuring Graphite at
http://graphite.wikidot.com but at the very least you will have to enable
AMQP support by setting:

[cache]
ENABLE_AMQP = True
AMQP_METRIC_NAME_IN_BODY = False

in Carbon’s configuration file.

If you have the metric aggregation system configured as in the section
above you can start Carbon cache using:

carbon-cache.py --config <config file> --debug start

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

Vumi Roadmap

The roadmap outlines features intended for upcoming releases of
Vumi. Information on older releases can be found in
Release Notes.

Version 0.5

	Projected date:	end of April 2012

	add ability to identify a single user across multiple transports as
per Identity Datastore.

	associate messages with billing accounts. See
Accounting.

	support custom application logic in Javascript. See
Custom Application Logic.

	support dynamic addition and removal of workers. See
Dynamic Workers.

	add Riak storage support. See Datastore Access.

Future

Future plans that have not yet been scheduled for a specific milestone
are outlined in the following sections. Parts of these features may
already have been implemented or have been included in the detailed
roadmap above:

	Blinkenlights

	Dynamic Workers

	Identity Datastore

	Conversation Datastore

	Custom Application Logic

	Accounting

	Datastore Access

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Vumi Roadmap

Blinkenlights

Failure is guaranteed, what will define our success when things fail is how we respond. We can only respond as good as we can gauge the performance of the individual components that make up Vumi.

Blinkenlights is a technical management module for Vumi that gives us that insight. It will give us accurate and realtime data on the general health and well being of all of the different moving parts.

Implementation Details

Blinkenlights connects to a dedicated exchange on our message broker. All messages broadcast to this exchange are meant for Blinkenlights to consume.

Every component connected to our message broker has a dedicated channel for broadcasting status updates to Blinkenlights. Blinkenlights will consume these messages and make them available for viewing in a browser.

Note

Blinkenlights will probably remain intentionally ugly as we do not want people to mistake this for a dashboard.

Typical Blinkenlights Message Payload

The messages that Blinkenlights are JSON encoded dictionaries. An example Blinkenlights message only requires three keys:

{
 "name": "SMPP Transport 1",
 "uuid": "0f148162-a25b-11e0-ba57-0017f2d90f78",
 "timestamp": [2011, 6, 29, 15, 3, 23]
}

	name:	The name of the component connected to AMQP. Preferably unique.

	uuid:	An identifier for this component, must be unique.

	timestamp:	A UTC timestamp as a list in the following format: [YYYY, MM, DD, HH, MM, SS]. We use a list as Javascript doesn’t have a built-in date notation for JSON.

The components should publish a status update in the form of a JSON dictionary every minute. If an update hasn’t been received for two minutes then the component will be flagged as being in an error state.

Any other keys and values can be added to the dictionary, they’ll be published in a tabular format. Each transport is free to add whatever relevant key/value pairs. For example, for SMPP a relevant extra key/value pair could be messages per second processed.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Vumi Roadmap

Dynamic Workers

This has been completely rethought since the last version of this
document. (This is still very much a work in progress, so please
correct, update or argue as necessary.)

In the old system, we have a separate twistd process for each
worker, managed by supervisord. In the Brave New Dyanmic Workers
World, we will be able to start and stop arbitrary workers in a
twistd process by sending a Blinkenlights message to a
supervisor worker in that process.

	Advantages:

	
	We can manage Vumi workers separately from OS processes, which
gives us more flexibility.

	We can segregate workers for different projects/campaigns into
different processes, which can make accounting easier.

	Disadvantages:

	
	We have to manage Vumi workers separately from OS processes, which
requires more work and higher system complexity. (This is the basic
cost of the feature, though, and it’s worth it for the
flexibility.)

	A badly-behaved worker can take down a bunch of other workers if it
manages to kill/block the process.

Supervisor workers

Note

I have assumed that the supervisor will be a worker rather than a
static component of the process. I don’t have any really compelling
reasons either way, but making it a worker lets us coexist easily
with the current one-worker-one-process model.

A supervisor worker is nothing more than a standard worker that
manages other workers within its process. Its responsibilites have not
yet been completely defined, but will likely the following:

	Monitoring and reportng process-level metrics.

	Starting and stopping workers as required.

Monitoring will use the usual Blinkenlights mechanisms, and
will work the same way as any other worker’s monitoring. The
supervisor will also provide a queryable status API to allow
interrogation via Blinkenlights. (Format to be decided.)

Starting and stopping workers will be done via Blinkenlights messages
with a payload format similar to the following:

{
 "operation": "vumi_worker",
 "worker_name": "SMPP Transport for account1",
 "worker_class": "vumi.workers.smpp.transport.SMPPTransport",
 "worker_config": {
 "host": "smpp.host.com",
 "port": "2773",
 "username": "account1",
 "password": "password",
 "system_id": "abc",
 },
}

We could potentially even have a hierarchy of supervisors, workers and
hybrid workers:

process
 +- supervisor
 +- worker
 +- worker
 +- hybrid supervisor/worker
 | +- worker
 | +- worker
 +- worker

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Vumi Roadmap

Identity Datastore

To be confirmed.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Vumi Roadmap

Conversation Datastore

We are currently using PostgreSQL as our main datastore and are using Django’s ORM as our means of interacting with it. This however is going to change.

What we are going towards:

	HBase as our conversation store.

	Interface with it via HBase’s Stargate REST APIs.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Vumi Roadmap

Custom Application Logic

Javascript is the DSL of the web. Vumi will allow developers used to front-end development technologies to build and host frontend and backend applications using Javascript as the main language.

Pros:

	Javascript lends itself well to event based programming, ideal for messaging.

	Javascript is well known to the target audience.

	Javascript is currently experiencing major development in terms of performance improvements by Google, Apple, Opera & Mozilla.

	Javascript has AMQP libraries available.

Cons:

	We would need to sandbox it (but we’d need to do that regardless, Node.js has some capabilities for this but I’d want the sandbox to restrict any file system access).

	We’re introducing a different environment next to Python.

	Data access could be more difficult than Python.

How would it work?

Application developers could bundle (zip) their applications as follows:

	application/index.html is the HTML5 application that we’ll host.

	application/assets/ is the Javascript, CSS and images needed by the frontend application.

	workers/worker.js has the workers that we’d fire up to run the applications workers for specific campaigns. These listen to messages arriving over AMQP as ‘events’ trigger specific pieces of logic for that campaign.

The HTML5 application would have direct access to the Vumi JSON APIs, zero middleware would be needed.

This application could then be uploaded to Vumi and we’d make it available in their account and link their logic to a specific SMS short/long code, twitter handle or USSD code.

Python would still be driving all of the main pieces (SMPP, Twitter, our JSON API’s etc...) only the hosted applications would be javascript based. Nothing is stopping us from allowing Python as a worker language at a later stage as well.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Vumi Roadmap

Accounting

Note

Accounting at this stage is the responsibility of the campaign specific logic, this however will change over time.

Initially Vumi takes a deliberately simple approach to accounting.

What Vumi should do now:

	An account can be active or inactive.

	Messaging only takes place for active accounts, messages submitted for inactive accounts are discarded and unrecoverable.

	Every message sent or received is linked to an account.

	Every message sent or received is timestamped.

	All messages sent or received can be queried and exported by date per account.

What Vumi will do in the future:

	Send and receive messages against a limited amount of message credits.

	Payment mechanisms in order to purchase more credits.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

 	Vumi Roadmap

Datastore Access

Currently all datastore access is via Django’s ORM with the database being PostgreSQL. This is going to change.

We will continue to use PostgreSQL for data that isn’t going to be very write heavy. These include:

	User accounts

	Groups

	Accounting related data (related to user accounts and groups)

The change we are planning for is to be using HBase for the following data:

	Conversation

	Messages that are part of a conversation

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

Release Notes

Version 0.4

	Version:	0.4.0

	Date released:	16 Apr 2012

	added support for once-off scheduling of messages.

	added MultiWorker.

	added support for grouped messages.

	added support for middleware for transports and applicatons.

	added middleware for storing of all transport messages.

	added support for tag pools.

	added Mediafone transport.

	added support for setting global vumi worker options via a YAML
configuration file.

	added a keyword-based message dispatcher.

	added a grouping dispatcher that assists with A/B testing.

	added support for sending outbound messages that aren’t replies to
application workers.

	extended set of message parameters supported by the http_relay worker.

	fixed twittytwister installation error.

	fixed bug in Integrat transport that caused it to send two new
session messages.

	ported the TruTeq transport to the new message format.

	added support for longer messages to the Opera transport.

	wrote a tutorial.

	documented middleware and dispatchers.

	cleaned up of SMPP transport.

	removed UglyModel.

	removed Django-based vumi.webapp.

	added support for running vumi tests using tox.

Version 0.3

	Version:	0.3.1

	Date released:	12 Jan 2012

	Use yaml.safe_load everywhere YAML config files are loaded. This
fixes a potential security issue which allowed those with write
access to Vumi configuration files to run arbitrary Python code as
the user running Vumi.

	Fix bug in metrics manager that unintentionally allowed two metrics
with the same name to be registered.

	Version:	0.3.0

	Date released:	4 Jan 2012

	defined common message format.

	added user session management.

	added transport worker base class.

	added application worker base class.

	made workers into Twisted services.

	re-organized example application workers into a separate package and
updated all examples to use common message format

	deprecated Django-based vumi.webapp

	added and deprecated UglyModel

	re-organized transports into a separate package and updated all
transports except TruTeq to use common message (TruTeq will be
migrated in 0.4 or a 0.3 point release).

	added satisfactory HTTP API(s)

	removed SMPP transport’s dependency on Django

Version 0.2

	Version:	0.2.0

	Date released:	19 September 2011

	System metrics as per Blinkenlights.

	Realtime dashboarding via Geckoboard.

Version 0.1

	Version:	0.1.0

	Date released:	4 August 2011

	SMPP Transport (version 3.4 in transceiver mode)

	Send & receive SMS messages.

	Send & receive USSD messages over SMPP.

	Supports SAR (segmentation and reassembly, allowing receiving of
SMS messages larger than 160 characters).

	Graceful reconnecting of a failed SMPP bind.

	Delivery reports of SMS messages.

	XMPP Transport

	Providing connectivity to Gtalk, Jabber and any other XMPP based
service.

	IRC Transport

	Currently used to log conversations going on in various IRC
channels.

	GSM Transport (currently uses pygsm [http://pypi.python.org/pypi/pygsm], looking at gammu [http://wammu.eu] as a replacement)

	Interval based polling of new SMS messages that a GSM modem has
received.

	Immediate sending of outbound SMS messages.

	Twitter Transport

	Live tracking of any combination of keywords or hashtags on
twitter.

	USSD Transports for various aggregators covering 12 African
countries.

	HTTP API for SMS messaging:

	Sending SMS messages via a given transport.

	Receiving SMS messages via an HTTP callback.

	Receiving SMS delivery reports via an HTTP callback.

	Querying received SMS messages.

	Querying the delivery status of sent SMS messages.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

Routing Naming Conventions

Transports

Transports use the following routing key convention:

	<transport_name>.inbound for sending messages from users (to vumi
applications).

	<transport_name>.outbound for receiving messages to send to users
(from vumi applications).

	<transport_name>.event for sending message-related events
(e.g. acknowledgements, delivery reports) to vumi applications.

	<transport_name>.failures for sending failed messages to failure
workers.

Transports use the vumi exchange (which is a direct exchange).

Metrics

The routing keys used by metrics workers are detailed in the table
below. Exchanges are direct unless otherwise specified.

Routing Naming Conventions

 How we do releases

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vumi 0.5.34 documentation

How we do releases

Update the release notes and roadmap

Update the Vumi Roadmap and Release Notes as necessary.

Create a release branch

Select a release series number and initial version number:

$ SERIES=0.1.x
$ VER=0.1.0a

Start by creating the release branch (usually from develop but you can
also specify a commit to start from):

$ git flow release start $SERIES [<start point>]

Set the version in the release branch:

$./utils/bump-version.sh $VER
$ git add setup.py docs/conf.py vumi/__init__.py
$ git commit -m "Set initial version for series $SERIES"

Set the version number in the develop branch if necessary.

Push your changes to Github:

$ git push origin release/$SERIES

Tag the release

Select a series to release from and version number:

$ SERIES=0.1.x
$ VER=0.1.0
$ NEXTVER=0.1.1a

Bump version immediately prior to release and tag the commit:

$ git checkout release/$SERIES
$./utils/bump-version.sh $VER
$ git add setup.py docs/conf.py vumi/__init__.py
$ git commit -m "Version $VER"
$ git tag vumi-$VER

Bump version number on release branch:

$./utils/bump-version.sh $NEXTVER
$ git add setup.py docs/conf.py vumi/__init__.py
$ git commit -m "Bump release series version."

Merge to master if this is a tag off the latest release series:

$ git checkout master
$ git merge vumi-$VER

Push your changes to Github (don’t forget to push the new tag):

$ git push
$ git push origin refs/tags/vumi-$VER

Release to PyPI

Select the version number:

$ VER=0.1.0
$ git checkout vumi-$VER

Register the release with PyPI:

$ python setup.py register

Build the source distribution pacakge:

$ python setup.py sdist

Upload the release to PyPI:

$ twine-upload dist/vumi-$VER.tar.gz

Declare victory.

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Coding Guidelines

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Vumi 0.5.34 documentation

Coding Guidelines

Code contributions to Vumi should:

	Adhere to the PEP 8 [https://www.python.org/dev/peps/pep-0008] coding standard.

	Come with unittests.

	Come with docstrings.

Vumi docstring format

	For classes, __init__ should be documented in the class docstring.

	Function docstrings should look like:

def format_exception(etype, value, tb, limit=None):
 """Format the exception with a traceback.

 :type etype: exception class
 :param etype: exception type
 :param value: exception value
 :param tb: traceback object
 :param limit: maximum number of stack frames to show
 :type limit: integer or None
 :rtype: list of strings
 """

Unit tests

Test helper API reference

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	Vumi 0.5.34 documentation

 Python Module Index

 v

 			

 		
 v	

 	[image: -]
 	
 vumi	

 	
 	
 vumi.application.base	

 	
 	
 vumi.application.http_relay	

 	
 	
 vumi.application.rapidsms_relay	

 	
 	
 vumi.application.sandbox	

 	
 	
 vumi.application.tests.helpers	

 	
 	
 vumi.blinkenlights.metrics	

 	
 	
 vumi.dispatchers	

 	
 	
 vumi.dispatchers.tests.helpers	

 	
 	
 vumi.middleware	

 	
 	
 vumi.tests.helpers	

 	
 	
 vumi.transports.airtel.airtel	

 	
 	
 vumi.transports.api.api	

 	
 	
 vumi.transports.api.oldapi	

 	
 	
 vumi.transports.apposit.apposit	

 	
 	
 vumi.transports.base	

 	
 	
 vumi.transports.cellulant.cellulant	

 	
 	
 vumi.transports.cellulant.cellulant_sms	

 	
 	
 vumi.transports.devnull.devnull	

 	
 	
 vumi.transports.httprpc.httprpc	

 	
 	
 vumi.transports.httprpc.tests.helpers	

 	
 	
 vumi.transports.imimobile.imimobile_ussd	

 	
 	
 vumi.transports.infobip.infobip	

 	
 	
 vumi.transports.integrat.integrat	

 	
 	
 vumi.transports.irc.irc	

 	
 	
 vumi.transports.mediaedgegsm.mediaedgegsm	

 	
 	
 vumi.transports.mediafonemc.mediafonemc	

 	
 	
 vumi.transports.mtech_ussd.mtech_ussd	

 	
 	
 vumi.transports.mtn_nigeria.mtn_nigeria_ussd	

 	
 	
 vumi.transports.mxit.mxit	

 	
 	
 vumi.transports.opera.opera	

 	
 	
 vumi.transports.parlayx.parlayx	

 	
 	
 vumi.transports.safaricom.safaricom	

 	
 	
 vumi.transports.smpp	

 	
 	
 vumi.transports.smssync.smssync	

 	
 	
 vumi.transports.telnet.telnet	

 	
 	
 vumi.transports.tests.helpers	

 	
 	
 vumi.transports.truteq.truteq	

 	
 	
 vumi.transports.twitter.twitter	

 	
 	
 vumi.transports.vas2nets	

 	
 	
 vumi.transports.vodacom_messaging.vodacom_messaging	

 	
 	
 vumi.transports.vumi_bridge.vumi_bridge	

 	
 	
 vumi.transports.xmpp.xmpp	

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

 Index

 Navigation

 	
 index

 	
 modules |

 	Vumi 0.5.34 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	

 	action() (vumi.transports.irc.irc.VumiBotProtocol method)

 	add_cleanup() (vumi.tests.helpers.VumiTestCase method)

 	add_helper() (vumi.tests.helpers.IHelperEnabledTestCase method)

 	

 	(vumi.tests.helpers.VumiTestCase method)

 	add_msginfo_metadata() (vumi.transports.smssync.smssync.BaseSmsSyncTransport method)

 	add_status() (vumi.transports.httprpc.httprpc.HttpRpcTransport method)

 	AddressTranslationMiddleware (class in vumi.middleware.address_translator)

 	agent_class (vumi.application.sandbox.HttpClientResource attribute)

 	Aggregator (class in vumi.blinkenlights.metrics)

 	

 	AirtelUSSDTransport (class in vumi.transports.airtel.airtel)

 	AirtelUSSDTransportConfig (class in vumi.transports.airtel.airtel)

 	alterCollidedNick() (vumi.transports.irc.irc.VumiBotProtocol method)

 	ApplicationConfig (class in vumi.application.base)

 	ApplicationHelper (class in vumi.application.tests.helpers)

 	ApplicationWorker (class in vumi.application.base)

 	AppositTransport (class in vumi.transports.apposit.apposit)

 	AppositTransportConfig (class in vumi.transports.apposit.apposit)

B

 	

 	BadRequestError

 	BaseDispatchRouter (class in vumi.dispatchers)

 	

 	BaseMiddleware (class in vumi.middleware)

 	BaseSmsSyncTransport (class in vumi.transports.smssync.smssync)

C

 	

 	callLater() (vumi.transports.smssync.smssync.BaseSmsSyncTransport method)

 	canonicalize_recipient() (vumi.transports.irc.irc.IrcMessage static method)

 	CellulantError

 	CellulantSmsTransport (class in vumi.transports.cellulant.cellulant_sms)

 	CellulantSmsTransportConfig (class in vumi.transports.cellulant.cellulant_sms)

 	CellulantTransport (class in vumi.transports.cellulant.cellulant)

 	channel() (vumi.transports.irc.irc.IrcMessage method)

 	check_endpoint() (vumi.application.base.ApplicationWorker static method)

 	cleanup() (vumi.tests.helpers.IHelper method)

 	

 	(vumi.tests.helpers.WorkerHelper method)

 	cleanup_worker() (vumi.tests.helpers.WorkerHelper method)

 	clear_all_dispatched() (vumi.tests.helpers.WorkerHelper method)

 	clear_dispatched_events() (vumi.tests.helpers.WorkerHelper method)

 	

 	clear_dispatched_inbound() (vumi.tests.helpers.WorkerHelper method)

 	clear_dispatched_metrics() (vumi.tests.helpers.WorkerHelper method)

 	clear_dispatched_outbound() (vumi.tests.helpers.WorkerHelper method)

 	clear_dispatched_statuses() (vumi.tests.helpers.WorkerHelper method)

 	close_session() (vumi.application.base.ApplicationWorker method)

 	CONFIG_CLASS (vumi.application.base.ApplicationWorker attribute)

 	

 	(vumi.middleware.BaseMiddleware attribute)

 	(vumi.transports.airtel.airtel.AirtelUSSDTransport attribute)

 	(vumi.transports.api.api.HttpApiTransport attribute)

 	(vumi.transports.apposit.apposit.AppositTransport attribute)

 	(vumi.transports.base.Transport attribute)

 	(vumi.transports.cellulant.cellulant_sms.CellulantSmsTransport attribute)

 	(vumi.transports.httprpc.httprpc.HttpRpcTransport attribute)

 	(vumi.transports.irc.irc.IrcTransport attribute)

 	(vumi.transports.mtn_nigeria.mtn_nigeria_ussd.MtnNigeriaUssdTransport attribute)

 	(vumi.transports.mxit.mxit.MxitTransport attribute)

 	(vumi.transports.parlayx.parlayx.ParlayXTransport attribute)

 	(vumi.transports.telnet.telnet.TelnetServerTransport attribute)

 	(vumi.transports.truteq.truteq.TruteqTransport attribute)

 	(vumi.transports.twitter.twitter.TwitterTransport attribute)

 	(vumi.transports.vumi_bridge.vumi_bridge.GoConversationClientTransport attribute)

 	consume_ack() (vumi.application.base.ApplicationWorker method)

 	consume_delivery_report() (vumi.application.base.ApplicationWorker method)

 	consume_nack() (vumi.application.base.ApplicationWorker method)

 	consume_user_message() (vumi.application.base.ApplicationWorker method)

 	ContentKeywordRouter (class in vumi.dispatchers)

 	Count (class in vumi.blinkenlights.metrics)

D

 	

 	DEFAULT (in module vumi.tests.helpers)

 	DEFAULT_AGGREGATORS (vumi.blinkenlights.metrics.Count attribute)

 	

 	(vumi.blinkenlights.metrics.Metric attribute)

 	(vumi.blinkenlights.metrics.Timer attribute)

 	DevNullTransport (class in vumi.transports.devnull.devnull)

 	dispatch_event() (vumi.application.base.ApplicationWorker method)

 	

 	(vumi.tests.helpers.WorkerHelper method)

 	dispatch_inbound() (vumi.tests.helpers.WorkerHelper method)

 	dispatch_inbound_event() (vumi.dispatchers.BaseDispatchRouter method)

 	dispatch_inbound_message() (vumi.dispatchers.BaseDispatchRouter method)

 	

 	dispatch_outbound() (vumi.tests.helpers.WorkerHelper method)

 	dispatch_outbound_message() (vumi.dispatchers.BaseDispatchRouter method)

 	dispatch_raw() (vumi.tests.helpers.WorkerHelper method)

 	dispatch_status() (vumi.tests.helpers.WorkerHelper method)

 	dispatch_user_message() (vumi.application.base.ApplicationWorker method)

 	DispatcherConnectorHelper (class in vumi.dispatchers.tests.helpers)

 	DispatcherHelper (class in vumi.dispatchers.tests.helpers)

E

 	

 	extract_message_id() (in module vumi.transports.parlayx.parlayx)

F

 	

 	find_nodejs_or_skip_test() (in module vumi.application.tests.helpers)

 	

 	FromAddrMultiplexRouter (class in vumi.dispatchers)

G

 	

 	generate_message_id() (vumi.transports.base.Transport static method)

 	generate_proxies() (in module vumi.tests.helpers)

 	get_application() (vumi.application.tests.helpers.ApplicationHelper method)

 	get_clock() (vumi.transports.httprpc.httprpc.HttpRpcTransport method)

 	get_connector_helper() (vumi.dispatchers.tests.helpers.DispatcherHelper method)

 	get_dispatched() (vumi.tests.helpers.WorkerHelper method)

 	get_dispatched_events() (vumi.tests.helpers.WorkerHelper method)

 	get_dispatched_failures() (vumi.transports.tests.helpers.TransportHelper method)

 	get_dispatched_inbound() (vumi.tests.helpers.WorkerHelper method)

 	get_dispatched_metrics() (vumi.tests.helpers.WorkerHelper method)

 	get_dispatched_outbound() (vumi.tests.helpers.WorkerHelper method)

 	get_dispatched_statuses() (vumi.tests.helpers.WorkerHelper method)

 	get_dispatcher() (vumi.dispatchers.tests.helpers.DispatcherHelper method)

 	

 	get_fake_amqp_client() (vumi.tests.helpers.WorkerHelper class method)

 	get_message_id_for_identifier() (vumi.transports.opera.opera.OperaTransport method)

 	get_redis_manager() (vumi.tests.helpers.PersistenceHelper method)

 	get_riak_manager() (vumi.tests.helpers.PersistenceHelper method)

 	get_stack_trace() (in module vumi.tests.helpers)

 	get_timeout() (in module vumi.tests.helpers)

 	get_to_addr() (vumi.transports.imimobile.imimobile_ussd.ImiMobileUssdTransport method)

 	get_transport() (vumi.transports.tests.helpers.TransportHelper method)

 	get_transport_url() (vumi.transports.httprpc.httprpc.HttpRpcTransport method)

 	

 	(vumi.transports.opera.opera.OperaTransport method)

 	get_worker() (vumi.tests.helpers.WorkerHelper method)

 	get_worker_raw() (vumi.tests.helpers.WorkerHelper class method)

 	GoConversationClientTransport (class in vumi.transports.vumi_bridge.vumi_bridge)

H

 	

 	handle_consume_event() (vumi.middleware.BaseMiddleware method)

 	handle_consume_failure() (vumi.middleware.BaseMiddleware method)

 	handle_consume_inbound() (vumi.middleware.BaseMiddleware method)

 	handle_consume_outbound() (vumi.middleware.BaseMiddleware method)

 	handle_critical() (vumi.application.sandbox.LoggingResource method)

 	handle_debug() (vumi.application.sandbox.LoggingResource method)

 	handle_delete() (vumi.application.sandbox.HttpClientResource method)

 	

 	(vumi.application.sandbox.RedisResource method)

 	handle_error() (vumi.application.sandbox.LoggingResource method)

 	handle_event() (vumi.middleware.BaseMiddleware method)

 	handle_failure() (vumi.middleware.BaseMiddleware method)

 	handle_get() (vumi.application.sandbox.HttpClientResource method)

 	

 	(vumi.application.sandbox.RedisResource method)

 	handle_head() (vumi.application.sandbox.HttpClientResource method)

 	handle_inbound() (vumi.middleware.BaseMiddleware method)

 	handle_incr() (vumi.application.sandbox.RedisResource method)

 	handle_info() (vumi.application.sandbox.LoggingResource method)

 	handle_log() (vumi.application.sandbox.LoggingResource method)

 	handle_outbound() (vumi.middleware.BaseMiddleware method)

 	handle_outbound_message() (vumi.transports.base.Transport method)

 	

 	(vumi.transports.parlayx.parlayx.ParlayXTransport method)

 	handle_outbound_message_failure() (vumi.transports.opera.opera.OperaTransport method)

 	

 	(vumi.transports.parlayx.parlayx.ParlayXTransport method)

 	handle_patch() (vumi.application.sandbox.HttpClientResource method)

 	

 	handle_post() (vumi.application.sandbox.HttpClientResource method)

 	handle_publish_event() (vumi.middleware.BaseMiddleware method)

 	handle_publish_failure() (vumi.middleware.BaseMiddleware method)

 	handle_publish_inbound() (vumi.middleware.BaseMiddleware method)

 	handle_publish_outbound() (vumi.middleware.BaseMiddleware method)

 	handle_put() (vumi.application.sandbox.HttpClientResource method)

 	handle_raw_inbound_message() (vumi.transports.parlayx.parlayx.ParlayXTransport method)

 	handle_set() (vumi.application.sandbox.RedisResource method)

 	handle_warning() (vumi.application.sandbox.LoggingResource method)

 	html_decode() (vumi.transports.mxit.mxit.MxitTransport method)

 	HttpApiConfig (class in vumi.transports.api.api)

 	HttpApiTransport (class in vumi.transports.api.api)

 	HttpClientResource (class in vumi.application.sandbox)

 	HTTPRelayApplication (class in vumi.application.http_relay)

 	HTTPRelayConfig (class in vumi.application.http_relay)

 	HttpRpcTransport (class in vumi.transports.httprpc.httprpc)

 	HttpRpcTransportConfig (class in vumi.transports.httprpc.httprpc)

 	HttpRpcTransportHelper (class in vumi.transports.httprpc.tests.helpers)

 	HttpRpcTransportHelperError

I

 	

 	IHelper (interface in vumi.tests.helpers)

 	IHelperEnabledTestCase (interface in vumi.tests.helpers)

 	ImiMobileUssdTransport (class in vumi.transports.imimobile.imimobile_ussd)

 	import_skip() (in module vumi.tests.helpers)

 	inc() (vumi.blinkenlights.metrics.Count method)

 	InfobipError

 	InfobipTransport (class in vumi.transports.infobip.infobip)

 	

 	IntegratTransport (class in vumi.transports.integrat.integrat)

 	irc_NICK() (vumi.transports.irc.irc.VumiBotProtocol method)

 	IrcConfig (class in vumi.transports.irc.irc)

 	IrcMessage (class in vumi.transports.irc.irc)

 	IrcTransport (class in vumi.transports.irc.irc)

 	ist_to_utc() (vumi.transports.imimobile.imimobile_ussd.ImiMobileUssdTransport class method)

J

 	

 	joined() (vumi.transports.irc.irc.VumiBotProtocol method)

 	JsFileSandbox (class in vumi.application.sandbox)

 	JsFileSandbox.CONFIG_CLASS (class in vumi.application.sandbox)

 	

 	JsSandbox (class in vumi.application.sandbox)

 	JsSandboxConfig (class in vumi.application.sandbox)

 	JsSandboxResource (class in vumi.application.sandbox)

K

 	

 	kick_delivery() (vumi.tests.helpers.WorkerHelper method)

L

 	

 	log() (vumi.application.sandbox.LoggingResource method)

 	LoggingMiddleware (class in vumi.middleware.logging)

 	

 	LoggingResource (class in vumi.application.sandbox)

M

 	

 	make_ack() (vumi.tests.helpers.MessageHelper method)

 	make_delivery_report() (vumi.tests.helpers.MessageHelper method)

 	make_dispatch_ack() (vumi.tests.helpers.MessageDispatchHelper method)

 	make_dispatch_delivery_report() (vumi.tests.helpers.MessageDispatchHelper method)

 	make_dispatch_inbound() (vumi.tests.helpers.MessageDispatchHelper method)

 	make_dispatch_nack() (vumi.tests.helpers.MessageDispatchHelper method)

 	make_dispatch_outbound() (vumi.tests.helpers.MessageDispatchHelper method)

 	make_dispatch_reply() (vumi.tests.helpers.MessageDispatchHelper method)

 	make_dispatch_status() (vumi.tests.helpers.MessageDispatchHelper method)

 	make_event() (vumi.tests.helpers.MessageHelper method)

 	make_inbound() (vumi.tests.helpers.MessageHelper method)

 	make_nack() (vumi.tests.helpers.MessageHelper method)

 	make_outbound() (vumi.tests.helpers.MessageHelper method)

 	make_reply() (vumi.tests.helpers.MessageHelper method)

 	make_status() (vumi.tests.helpers.MessageHelper method)

 	make_user_message() (vumi.tests.helpers.MessageHelper method)

 	manage() (vumi.blinkenlights.metrics.Metric method)

 	maybe_async() (in module vumi.tests.helpers)

 	maybe_async_return() (in module vumi.tests.helpers)

 	

 	MediaEdgeGSMTransport (class in vumi.transports.mediaedgegsm.mediaedgegsm)

 	MediafoneTransport (class in vumi.transports.mediafonemc.mediafonemc)

 	MessageDispatchHelper (class in vumi.tests.helpers)

 	MessageHelper (class in vumi.tests.helpers)

 	Metric (class in vumi.blinkenlights.metrics)

 	MetricManager (class in vumi.blinkenlights.metrics)

 	mk_config() (vumi.tests.helpers.PersistenceHelper method)

 	mk_request() (vumi.transports.httprpc.tests.helpers.HttpRpcTransportHelper method)

 	mk_request_raw() (vumi.transports.httprpc.tests.helpers.HttpRpcTransportHelper method)

 	msginfo_for_message() (vumi.transports.smssync.smssync.BaseSmsSyncTransport method)

 	msginfo_for_request() (vumi.transports.smssync.smssync.BaseSmsSyncTransport method)

 	MtechUssdTransport (class in vumi.transports.mtech_ussd.mtech_ussd)

 	MtnNigeriaUssdTransport (class in vumi.transports.mtn_nigeria.mtn_nigeria_ussd)

 	MtnNigeriaUssdTransportConfig (class in vumi.transports.mtn_nigeria.mtn_nigeria_ussd)

 	MultiSmsSync (class in vumi.transports.smssync.smssync)

 	MxitTransport (class in vumi.transports.mxit.mxit)

 	MxitTransportConfig (class in vumi.transports.mxit.mxit)

 	MxitTransportException

N

 	

 	new_session() (vumi.application.base.ApplicationWorker method)

 	

 	noticed() (vumi.transports.irc.irc.VumiBotProtocol method)

O

 	

 	OldSimpleHttpTransport (class in vumi.transports.api.oldapi)

 	OldTemplateHttpTransport (class in vumi.transports.api.oldapi)

 	on_degraded_response_time() (vumi.transports.httprpc.httprpc.HttpRpcTransport method)

 	on_down_response_time() (vumi.transports.httprpc.httprpc.HttpRpcTransport method)

 	on_good_response_time() (vumi.transports.httprpc.httprpc.HttpRpcTransport method)

 	

 	on_timeout() (vumi.transports.httprpc.httprpc.HttpRpcTransport method)

 	oneshot() (vumi.blinkenlights.metrics.MetricManager method)

 	OperaTransport (class in vumi.transports.opera.opera)

 	OutboundResource (class in vumi.application.sandbox)

P

 	

 	ParlayXTransport (class in vumi.transports.parlayx.parlayx)

 	ParlayXTransportConfig (class in vumi.transports.parlayx.parlayx)

 	PersistenceHelper (class in vumi.tests.helpers)

 	PersistenceHelperError

 	poll() (vumi.blinkenlights.metrics.Metric method)

 	privmsg() (vumi.transports.irc.irc.VumiBotProtocol method)

 	protocol (vumi.transports.irc.irc.VumiBotFactory attribute)

 	

 	(vumi.transports.telnet.telnet.TelnetServerTransport attribute)

 	proxyable() (in module vumi.tests.helpers)

 	

 	publish_ack() (vumi.transports.base.Transport method)

 	publish_delivery_report() (vumi.transports.base.Transport method)

 	publish_event() (vumi.transports.base.Transport method)

 	publish_message() (vumi.transports.base.Transport method)

 	publish_metrics() (vumi.blinkenlights.metrics.MetricManager method)

 	publish_nack() (vumi.transports.base.Transport method)

 	publish_status() (vumi.transports.base.Transport method)

 	
 Python Enhancement Proposals

 	

 	PEP 8

R

 	

 	RapidSMSRelay (class in vumi.application.rapidsms_relay)

 	RapidSMSRelayConfig (class in vumi.application.rapidsms_relay)

 	record_load_and_store() (vumi.tests.helpers.PersistenceHelper method)

 	

 	RedisResource (class in vumi.application.sandbox)

 	register() (vumi.blinkenlights.metrics.MetricManager method)

 	RiakDisabledForTest (class in vumi.tests.helpers)

S

 	

 	SafaricomTransport (class in vumi.transports.safaricom.safaricom)

 	Sandbox (class in vumi.application.sandbox)

 	SandboxConfig (class in vumi.application.sandbox)

 	send_failure() (vumi.transports.base.Transport method)

 	service_class (vumi.transports.truteq.truteq.TruteqTransport attribute)

 	set() (vumi.blinkenlights.metrics.Metric method)

 	set_message_id_for_identifier() (vumi.transports.opera.opera.OperaTransport method)

 	set_request_end() (vumi.transports.httprpc.httprpc.HttpRpcTransport method)

 	setup() (vumi.tests.helpers.IHelper method)

 	setup_application() (vumi.application.base.ApplicationWorker method)

 	setup_middleware() (vumi.middleware.BaseMiddleware method)

 	setup_routing() (vumi.dispatchers.BaseDispatchRouter method)

 	setup_transport() (vumi.transports.base.Transport method)

 	

 	(vumi.transports.integrat.integrat.IntegratTransport method)

 	

 	setup_worker() (vumi.application.base.ApplicationWorker method)

 	

 	(vumi.transports.base.Transport method)

 	signedOn() (vumi.transports.irc.irc.VumiBotProtocol method)

 	SimpleDispatchRouter (class in vumi.dispatchers)

 	SingleSmsSync (class in vumi.transports.smssync.smssync)

 	skiptest() (in module vumi.tests.helpers)

 	SmppTransport (in module vumi.transports.smpp)

 	SmsSyncMsgInfo (class in vumi.transports.smssync.smssync)

 	start() (vumi.blinkenlights.metrics.MetricManager method)

 	start_polling() (vumi.blinkenlights.metrics.MetricManager method)

 	stop() (vumi.blinkenlights.metrics.MetricManager method)

 	stop_polling() (vumi.blinkenlights.metrics.MetricManager method)

 	StoringMiddleware (class in vumi.middleware.message_storing)

 	success_result_of() (in module vumi.tests.helpers)

T

 	

 	TaggingMiddleware (class in vumi.middleware.tagger)

 	tearDown() (vumi.tests.helpers.VumiTestCase method)

 	teardown_application() (vumi.application.base.ApplicationWorker method)

 	teardown_middleware() (vumi.middleware.BaseMiddleware method)

 	teardown_routing() (vumi.dispatchers.BaseDispatchRouter method)

 	teardown_transport() (vumi.transports.base.Transport method)

 	TelnetServerConfig (class in vumi.transports.telnet.telnet)

 	TelnetServerTransport (class in vumi.transports.telnet.telnet)

 	TelnetTransportProtocol (class in vumi.transports.telnet.telnet)

 	Timer (class in vumi.blinkenlights.metrics)

 	

 	ToAddrRouter (class in vumi.dispatchers)

 	Transport (class in vumi.transports.base)

 	TransportConfig (class in vumi.transports.base)

 	TransportHelper (class in vumi.transports.tests.helpers)

 	TransportPresenceClientProtocol (class in vumi.transports.xmpp.xmpp)

 	TransportToTransportRouter (class in vumi.dispatchers)

 	TruteqTransport (class in vumi.transports.truteq.truteq)

 	TruteqTransportConfig (class in vumi.transports.truteq.truteq)

 	TwitterTransport (class in vumi.transports.twitter.twitter)

 	TwitterTransportConfig (class in vumi.transports.twitter.twitter)

U

 	

 	unique_correlator() (in module vumi.transports.parlayx.parlayx)

 	

 	UserGroupingRouter (class in vumi.dispatchers)

V

 	

 	validate_config() (vumi.transports.integrat.integrat.IntegratTransport method)

 	

 	(vumi.transports.opera.opera.OperaTransport method)

 	Vas2NetsTransport (class in vumi.transports.vas2nets)

 	VodacomMessagingTransport (class in vumi.transports.vodacom_messaging.vodacom_messaging)

 	vumi.application.base (module)

 	vumi.application.http_relay (module)

 	vumi.application.rapidsms_relay (module)

 	vumi.application.sandbox (module)

 	vumi.application.tests.helpers (module)

 	vumi.blinkenlights.metrics (module)

 	vumi.dispatchers (module), [1], [2]

 	vumi.dispatchers.tests.helpers (module)

 	vumi.middleware (module)

 	vumi.tests.helpers (module)

 	vumi.transports.airtel.airtel (module)

 	vumi.transports.api.api (module)

 	vumi.transports.api.oldapi (module)

 	vumi.transports.apposit.apposit (module)

 	vumi.transports.base (module)

 	vumi.transports.cellulant.cellulant (module)

 	vumi.transports.cellulant.cellulant_sms (module)

 	vumi.transports.devnull.devnull (module)

 	vumi.transports.httprpc.httprpc (module)

 	vumi.transports.httprpc.tests.helpers (module)

 	vumi.transports.imimobile.imimobile_ussd (module)

 	vumi.transports.infobip.infobip (module)

 	

 	vumi.transports.integrat.integrat (module)

 	vumi.transports.irc.irc (module)

 	vumi.transports.mediaedgegsm.mediaedgegsm (module)

 	vumi.transports.mediafonemc.mediafonemc (module)

 	vumi.transports.mtech_ussd.mtech_ussd (module)

 	vumi.transports.mtn_nigeria.mtn_nigeria_ussd (module)

 	vumi.transports.mxit.mxit (module)

 	vumi.transports.opera.opera (module)

 	vumi.transports.parlayx.parlayx (module)

 	vumi.transports.safaricom.safaricom (module)

 	vumi.transports.smpp (module)

 	vumi.transports.smssync.smssync (module)

 	vumi.transports.telnet.telnet (module)

 	vumi.transports.tests.helpers (module)

 	vumi.transports.truteq.truteq (module)

 	vumi.transports.twitter.twitter (module)

 	vumi.transports.vas2nets (module)

 	vumi.transports.vodacom_messaging.vodacom_messaging (module)

 	vumi.transports.vumi_bridge.vumi_bridge (module)

 	vumi.transports.xmpp.xmpp (module)

 	VumiBotFactory (class in vumi.transports.irc.irc)

 	VumiBotProtocol (class in vumi.transports.irc.irc)

 	VumiBridgeClientTransportConfig (class in vumi.transports.vumi_bridge.vumi_bridge)

 	VumiBridgeServerTransportConfig (class in vumi.transports.vumi_bridge.vumi_bridge)

 	VumiTestCase (class in vumi.tests.helpers)

W

 	

 	wait_for_dispatched_events() (vumi.tests.helpers.WorkerHelper method)

 	wait_for_dispatched_inbound() (vumi.tests.helpers.WorkerHelper method)

 	wait_for_dispatched_metrics() (vumi.tests.helpers.WorkerHelper method)

 	

 	wait_for_dispatched_outbound() (vumi.tests.helpers.WorkerHelper method)

 	wait_for_dispatched_statuses() (vumi.tests.helpers.WorkerHelper method)

 	WorkerHelper (class in vumi.tests.helpers)

X

 	

 	XMPPTransport (class in vumi.transports.xmpp.xmpp)

 Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

test-helper-api.html

 Navigation

 		
 index

 		
 modules |

 		Vumi 0.5.34 documentation »

Test helper API reference

Basic test helpers

		
class vumi.tests.helpers.VumiTestCase

		Base test case class for all things vumi-related.

This is a subclass of twisted.trial.unittest.TestCase with a small
number of additional features:

		It implements IHelperEnabledTestCase to make using helpers
easier. (See add_helper().)

		timeout is set to a default value of 5 and can be overridden
by setting the VUMI_TEST_TIMEOUT environment variable. (Longer
timeouts are more reliable for continuous integration builds, shorter
ones are less painful for local development.)

		add_cleanup() provides an alternative mechanism for specifying
cleanup in the same place as the creation of thing that needs to be
cleaned up.

Note

While this class does not have a setUp() method (thus avoiding the
need for subclasses to call it), it does have a tearDown()
method. add_cleanup() should be used in subclasses instead of
overriding tearDown().

		
add_cleanup(func, *args, **kw)

		Register a cleanup function to be called at teardown time.

		Parameters:		
		func (callable) – The callable object to call at cleanup time. This callable may
return a Deferred, in which case cleanup will continue
after it fires.

		*args – Passed to func when it is called.

		**kw – Passed to func when it is called.

Note

This method should be use in place of the inherited
addCleanup() method, because the latter doesn’t apply timeouts
to cleanup functions.

		
add_helper(helper_object, *args, **kw)

		Perform setup and register cleanup for the given helper object.

		Parameters:		
		helper_object – Helper object to add. helper_object must provide the
IHelper interface.

		*args – Passed to helper_object.setup() when it is called.

		**kw – Passed to helper_object.setup() when it is called.

		Returns:		Either helper_object or a Deferred that fires with it.

If helper_object.setup() returns a Deferred, this method
also returns a Deferred.

Example usage assuming @inlineCallbacks:

>>> @inlineCallbacks
... def test_foo(self):
... msg_helper = yield self.add_helper(MessageHelper())
... msg_helper.make_inbound("foo")

Example usage assuming non-async setup:

>>> def test_bar(self):
... msg_helper = self.add_helper(MessageHelper())
... msg_helper.make_inbound("bar")

		
tearDown(*args, **kwargs)

		Run any cleanup functions registered with add_cleanup().

		
vumi.tests.helpers.DEFAULT

		This constant is a placeholder value for parameter defaults.
We can’t just use None because we may want to override a non-None default with an explicit None value.

		
interface vumi.tests.helpers.IHelper

		Interface for test helpers.

This specifies a standard setup and cleanup mechanism used by test cases
that implement the IHelperEnabledTestCase interface.

There are no interface restrictions on the constructor of a helper.

		
setup(*args, **kwargs)

		Perform potentially async helper setup.

This may return a deferred for async setup or block for sync setup. All
helpers must implement this even if it does nothing.

If the setup is optional but commonly used, this method can take flags
to perform or suppress all or part of it as required.

		
cleanup()

		Clean up any resources created by this helper.

This may return a deferred for async cleanup or block for sync cleanup.
All helpers must implement this even if it does nothing.

		
interface vumi.tests.helpers.IHelperEnabledTestCase

		Interface for test cases that use helpers.

This specifies a standard mechanism for managing setup and cleanup of
helper classes that implement the IHelper interface.

		
add_helper(helper_object, *args, **kwargs)

		Register cleanup and perform setup for a helper object.

This should call helper_object.setup(*args, **kwargs) and
self.add_cleanup(helper_object.cleanup) or an equivalent.

Returns the helper_object passed in or a Deferred if
setup is async.

		
vumi.tests.helpers.proxyable(func)

		Mark a method as being suitable for automatic proxy generation.

See generate_proxies() for usage.

		
vumi.tests.helpers.generate_proxies(target, source)

		Generate proxies on target for proxyable methods on source.

This is useful for wrapping helper objects in higher-level helpers or
extending a helper to provide extra functionality without having to resort
to subclassing.

The “proxying” is actually just copying the proxyable attribute onto the
target.

>>> class AddHelper(object):
... def __init__(self, number):
... self._number = number
...
... @proxyable
... def add_number(self, number):
... return self._number + number

>>> class OtherHelper(object):
... def __init__(self, number):
... self._adder = AddHelper(number)
... generate_proxies(self, self._adder)
...
... @proxyable
... def say_hello(self):
... return "hello"

>>> other_helper = OtherHelper(3)
>>> other_helper.say_hello()
'hello'
>>> other_helper.add_number(2)
5

		
vumi.tests.helpers.success_result_of(d)

		We can’t necessarily use TestCase.successResultOf because our Twisted might
not be new enough. This is a standalone copy with some minor message
differences.

		
vumi.tests.helpers.get_timeout()

		Look up the test timeout in the VUMI_TEST_TIMEOUT environment variable.

A default of 5 seconds is used if there isn’t one there.

		
vumi.tests.helpers.get_stack_trace(exclude_last=0)

		Get a stack trace that can be stored and referred to later.

The inside of this function is excluded from the stack trace, because it’s
not relevant. Additionally, all entries prior to the first occurrence of
“twisted/trial/_asynctest.py” or “django/test/testcases.py” are removed to
avoid unnecessary test runner noise.

		Parameters:		exclude_last (int) – Number of entries to remove from the end of the stack trace. Use this
to get rid of wrapper functions or implementation details irrelevant to
the purpose of the stack trace.

		Returns:		A list of strings, each representing a stack frame, in the same format
as traceback.format_stack().

		
class vumi.tests.helpers.MessageHelper(transport_name='sphex', transport_type='sms', mobile_addr='+41791234567', transport_addr='9292')

		Bases: object

Test helper for constructing various messages.

This helper does no setup or cleanup. It takes the following parameters,
which are used as defaults for message fields:

		Parameters:		
		transport_name (str) – Default value for transport_name on all messages.

		transport_type (str) – Default value for transport_type on all messages.

		mobile_addr (str) – Default value for from_addr on inbound messages and to_addr on
outbound messages.

		transport_addr (str) – Default value for to_addr on inbound messages and from_addr on
outbound messages.

		
make_inbound(content, from_addr=DEFAULT, to_addr=DEFAULT, **kw)

		Construct an inbound TransportUserMessage.

This is a convenience wrapper around make_user_message() and just
sets to_addr and from_addr appropriately for an inbound
message.

		
make_outbound(content, from_addr=DEFAULT, to_addr=DEFAULT, **kw)

		Construct an outbound TransportUserMessage.

This is a convenience wrapper around make_user_message() and just
sets to_addr and from_addr appropriately for an outbound
message.

		
make_user_message(content, from_addr, to_addr, group=None, session_event=None, transport_type=DEFAULT, transport_name=DEFAULT, transport_metadata=DEFAULT, helper_metadata=DEFAULT, endpoint=DEFAULT, **kw)

		Construct a TransportUserMessage.

This method is the underlying implementation for make_inbound()
and make_outbound() and those should be used instead where they
apply.

The only real difference between using this method and constructing a
message object directly is that this method provides sensible defaults
for most fields and sets the routing endpoint (if provided) in a more
convenient way.

The following parameters are mandatory:

		Parameters:		
		content (str) – Message content field.

		from_addr (str) – Message from_addr field.

		to_addr (str) – Message to_addr field.

The following parameters override default values for the message fields
of the same name:

		Parameters:		
		group (str) – Default None.

		session_event (str) – Default None.

		transport_type (str) – Default transport_type.

		transport_name (str) – Default transport_name.

		transport_metadata (dict) – Default {}.

		helper_metadata (dict) – Default {}.

The following parameter is special:

		Parameters:		endpoint (str) – If specified, the routing endpoint on the message is set by calling
TransportUserMessage.set_routing_endpoint().

All other keyword args are passed to the
TransportUserMessage constructor.

		
make_event(event_type, user_message_id, transport_type=DEFAULT, transport_name=DEFAULT, transport_metadata=DEFAULT, endpoint=DEFAULT, **kw)

		Construct a TransportEvent.

This method is the underlying implementation for make_ack(),
make_nack() and make_delivery_report(). Those should
be used instead where they apply.

The only real difference between using this method and constructing an
event object directly is that this method provides sensible defaults
for most fields and sets the routing endpoint (if provided) in a more
convenient way.

The following parameters are mandatory:

		Parameters:		
		event_type (str) – Event event_type field.

		user_message_id (str) – Event user_message_id field.

Any fields required by a particular event type (such as
sent_message_id for ack events) are also mandatory.

The following parameters override default values for the event fields
of the same name:

		Parameters:		
		transport_type (str) – Default transport_type.

		transport_name (str) – Default transport_name.

		transport_metadata (dict) – Default {}.

The following parameter is special:

		Parameters:		endpoint (str) – If specified, the routing endpoint on the event is set by calling
TransportUserMessage.set_routing_endpoint().

All other keyword args are passed to the
TransportEvent constructor.

		
make_ack(msg=None, sent_message_id=DEFAULT, **kw)

		Construct an ‘ack’ TransportEvent.

		Parameters:		
		msg – TransportUserMessage instance the event is
for. If None, this method will call make_outbound() to
get one.

		sent_message_id (str) – If this isn’t provided, msg['message_id'] will be used.

All remaining keyword params are passed to make_event().

		
make_nack(msg=None, nack_reason=DEFAULT, **kw)

		Construct a ‘nack’ TransportEvent.

		Parameters:		
		msg – TransportUserMessage instance the event is
for. If None, this method will call make_outbound() to
get one.

		nack_reason (str) – If this isn’t provided, a suitable excuse will be used.

All remaining keyword params are passed to make_event().

		
make_delivery_report(msg=None, delivery_status=DEFAULT, **kw)

		Construct a ‘delivery_report’ TransportEvent.

		Parameters:		
		msg – TransportUserMessage instance the event is
for. If None, this method will call make_outbound() to
get one.

		delivery_status (str) – If this isn’t provided, "delivered" will be used.

All remaining keyword params are passed to make_event().

		
make_reply(msg, content, **kw)

		Construct a reply TransportUserMessage.

This literally just calls msg.reply(content, **kw). It is included
for completeness and symmetry with
MessageDispatchHelper.make_dispatch_reply().

		
make_status(**kw)

		Construct a TransportStatus.

		
class vumi.tests.helpers.WorkerHelper(connector_name=None, broker=None, status_connector_name=None)

		Bases: object

Test helper for creating workers and dispatching messages.

This helper does no setup, but it waits for pending message deliveries and
the stops all workers it knows about during cleanup. It takes the following
parameters:

		Parameters:		
		connector_name (str) – Default value for connector_name on all message broker operations.
If None, the connector name must be provided for each operation.

		broker – The message broker to use internally. This should be an instance of
FakeAMQPBroker if it is provided, but
most of the time the default of None should be used to have the
helper create its own broker.

		
cleanup(*args, **kwargs)

		Wait for any pending message deliveries and stop all workers.

		
cleanup_worker(worker)

		Clean up a particular worker manually and remove it from the helper’s
cleanup list. This should only be called with workers that are already
in the helper’s cleanup list.

		
classmethod get_fake_amqp_client(broker)

		Wrap a fake broker in an fake client.

The broker parameter is mandatory because it’s important that cleanup
happen. If None is passed in explicitly, a new broker object will
be created.

		
classmethod get_worker_raw(worker_class, config, broker=None)

		Create and return an instance of a vumi worker.

This doesn’t start the worker and it doesn’t add it to any cleanup
machinery. In most cases, you want get_worker() instead.

		
get_worker(worker_class, config, start=True)

		Create and return an instance of a vumi worker.

		Parameters:		
		worker_class – The worker class to instantiate.

		config – Config dict.

		start – True to start the worker (default), False otherwise.

		
get_dispatched(connector_name, name, message_class)

		Get messages dispatched to a routing key.

The more specific get_dispatched_events(),
get_dispatched_inbound(), and get_dispatched_outbound()
wrapper methods should be used instead where they apply.

		Parameters:		
		connector_name (str) – The connector name, which is used as the routing key prefix.

		name (str) – The routing key suffix, generally "event", "inbound", or
"outbound".

		message_class – The message class to wrap the raw message data in. This should
probably be TransportUserMessage or
TransportEvent.

		
clear_all_dispatched()

		Clear all dispatched messages from the broker.

		
get_dispatched_events(connector_name=None)

		Get events dispatched to a connector.

		Parameters:		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		Returns:		A list of TransportEvent instances.

		
get_dispatched_inbound(connector_name=None)

		Get inbound messages dispatched to a connector.

		Parameters:		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		Returns:		A list of TransportUserMessage instances.

		
get_dispatched_outbound(connector_name=None)

		Get outbound messages dispatched to a connector.

		Parameters:		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		Returns:		A list of TransportUserMessage instances.

		
get_dispatched_statuses(connector_name=None)

		Get statuses dispatched to a connector.

		Parameters:		connector_name (str) – Connector name. If None, the default status connector name for
the helper instance will be used.

		Returns:		A list of TransportStatus instances.

		
wait_for_dispatched_events(amount=None, connector_name=None)

		Wait for events dispatched to a connector.

		Parameters:		
		amount (int) – Number of messages to wait for. If None, this will wait for the
end of the current delivery run instead of a specific number of
messages.

		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		Returns:		A Deferred that fires with a list of
TransportEvent instances.

		
wait_for_dispatched_inbound(amount=None, connector_name=None)

		Wait for inbound messages dispatched to a connector.

		Parameters:		
		amount (int) – Number of messages to wait for. If None, this will wait for the
end of the current delivery run instead of a specific number of
messages.

		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		Returns:		A Deferred that fires with a list of
TransportUserMessage instances.

		
wait_for_dispatched_outbound(amount=None, connector_name=None)

		Wait for outbound messages dispatched to a connector.

		Parameters:		
		amount (int) – Number of messages to wait for. If None, this will wait for the
end of the current delivery run instead of a specific number of
messages.

		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		Returns:		A Deferred that fires with a list of
TransportUserMessage instances.

		
wait_for_dispatched_statuses(amount=None, connector_name=None)

		Wait for statuses dispatched to a connector.

		Parameters:		
		amount (int) – Number of messages to wait for. If None, this will wait for the
end of the current delivery run instead of a specific number of
messages.

		connector_name (str) – Connector name. If None, the default status connector name for
the helper instance will be used.

		Returns:		A Deferred that fires with a list of
TransportEvent instances.

		
clear_dispatched_events(connector_name=None)

		Clear dispatched events for a connector.

		Parameters:		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		
clear_dispatched_inbound(connector_name=None)

		Clear dispatched inbound messages for a connector.

		Parameters:		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		
clear_dispatched_outbound(connector_name=None)

		Clear dispatched outbound messages for a connector.

		Parameters:		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		
clear_dispatched_statuses(connector_name=None)

		Clear dispatched statuses for a connector.

		Parameters:		connector_name (str) – Connector name. If None, the default status connector name for
the helper instance will be used.

		
dispatch_raw(routing_key, message, exchange='vumi')

		Dispatch a message to the specified routing key.

The more specific dispatch_inbound(), dispatch_outbound(),
and dispatch_event() wrapper methods should be used instead where
they apply.

		Parameters:		
		routing_key (str) – Routing key to dispatch the message to.

		message – Message to dispatch.

		exchange (str) – AMQP exchange to dispatch the message to. Defaults to "vumi"

		Returns:		A Deferred that fires when all messages have been
delivered.

		
dispatch_inbound(message, connector_name=None)

		Dispatch an inbound message.

		Parameters:		
		message – Message to dispatch. Should be a
TransportUserMessage instance.

		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		Returns:		A Deferred that fires when all messages have been
delivered.

		
dispatch_outbound(message, connector_name=None)

		Dispatch an outbound message.

		Parameters:		
		message – Message to dispatch. Should be a
TransportUserMessage instance.

		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		Returns:		A Deferred that fires when all messages have been
delivered.

		
dispatch_event(message, connector_name=None)

		Dispatch an event.

		Parameters:		
		message – Message to dispatch. Should be a
TransportEvent instance.

		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		Returns:		A Deferred that fires when all messages have been
delivered.

		
dispatch_status(message, connector_name=None)

		Dispatch a status.

		Parameters:		
		message – Message to dispatch. Should be a
TransportStatus instance.

		connector_name (str) – Connector name. If None, the default status connector name for
the helper instance will be used.

		Returns:		A Deferred that fires when all messages have been
delivered.

		
kick_delivery()

		Trigger delivery of messages by the broker.

This is generally called internally by anything that sends a message.

		Returns:		A Deferred that fires when all messages have been
delivered.

		
get_dispatched_metrics()

		Get dispatched metrics.

The list of datapoints from each dispatched metrics message is
returned.

		
wait_for_dispatched_metrics()

		Get dispatched metrics after waiting for any pending deliveries.

The list of datapoints from each dispatched metrics message is
returned.

		
clear_dispatched_metrics()

		Clear dispatched metrics messages from the broker.

		
class vumi.tests.helpers.MessageDispatchHelper(msg_helper, worker_helper)

		Bases: object

Helper for creating and immediately dispatching messages.

This builds on top of MessageHelper and WorkerHelper.

It does not allow dispatching to nonstandard connectors. If you need to do
that, either use MessageHelper and WorkerHelper directly
or build a second MessageDispatchHelper with a second
WorkerHelper.

		Parameters:		
		msg_helper – A MessageHelper instance.

		worker_helper – A WorkerHelper instance.

		
make_dispatch_inbound(*args, **kw)

		Construct and dispatch an inbound message.

This is a wrapper around MessageHelper.make_inbound() (to which
all parameters are passed) and WorkerHelper.dispatch_inbound().

		Returns:		A Deferred that fires with the constructed message once it
has been dispatched.

		
make_dispatch_outbound(*args, **kw)

		Construct and dispatch an outbound message.

This is a wrapper around MessageHelper.make_outbound() (to which
all parameters are passed) and WorkerHelper.dispatch_outbound().

		Returns:		A Deferred that fires with the constructed message once it
has been dispatched.

		
make_dispatch_ack(*args, **kw)

		Construct and dispatch an ack event.

This is a wrapper around MessageHelper.make_ack() (to which all
parameters are passed) and WorkerHelper.dispatch_event().

		Returns:		A Deferred that fires with the constructed event once it
has been dispatched.

		
make_dispatch_nack(*args, **kw)

		Construct and dispatch a nack event.

This is a wrapper around MessageHelper.make_nack() (to which all
parameters are passed) and WorkerHelper.dispatch_event().

		Returns:		A Deferred that fires with the constructed event once it
has been dispatched.

		
make_dispatch_delivery_report(*args, **kw)

		Construct and dispatch a delivery report event.

This is a wrapper around MessageHelper.make_delivery_report() (to
which all parameters are passed) and
WorkerHelper.dispatch_event().

		Returns:		A Deferred that fires with the constructed event once it
has been dispatched.

		
make_dispatch_reply(*args, **kw)

		Construct and dispatch a reply message.

This is a wrapper around MessageHelper.make_reply() (to which all
parameters are passed) and WorkerHelper.dispatch_outbound().

		Returns:		A Deferred that fires with the constructed message once it
has been dispatched.

		
make_dispatch_status(*args, **kw)

		Construct and dispatch a status.

This is a wrapper around MessageHelper.make_status() (to
which all parameters are passed) and
WorkerHelper.dispatch_status().

		Returns:		A Deferred that fires with the constructed message once it
has been dispatched.

		
class vumi.tests.helpers.RiakDisabledForTest

		Bases: object

Placeholder object for a disabled riak config.

This class exists to throw a meaningful error when trying to use Riak in
a test that disallows it. We can’t do this from inside the Riak setup
infrastructure, because that would be very invasive for something that
only really matters for tests.

		
vumi.tests.helpers.import_skip(exc, *expected)

		Raise SkipTest if the provided ImportError matches a
module name in expected, otherwise reraise the ImportError.

This is useful for skipping tests that require optional dependencies which
might not be present.

		
vumi.tests.helpers.skiptest(reason)

		Decorate a test that should be skipped with a reason.

		NOTE: Don’t import this as skip, because that will cause trial to skip

		the entire module that imports it.

		
vumi.tests.helpers.maybe_async(sync_attr)

		Decorate a method that may be sync or async.

This redecorates with the either @inlineCallbacks or
@flatten_generator, depending on the value of sync_attr.

		
vumi.tests.helpers.maybe_async_return(value, maybe_deferred)

		Return value or a deferred that fires with it.

This is useful in cases where we’re performing a potentially async
operation but don’t necessarily have enough information to use
maybe_async.

		
exception vumi.tests.helpers.PersistenceHelperError

		Bases: exceptions.Exception

Exception thrown by a PersistenceHelper when it sees something wrong.

		
class vumi.tests.helpers.PersistenceHelper(use_riak=False, is_sync=False, assert_closed=False)

		Bases: object

Test helper for managing persistent storage.

This helper manages Riak and Redis clients and configs and cleans up after
them. It does no setup, but its cleanup may take a while if there’s a lot
in Riak.

All configs for objects that build Riak or Redis clients must be passed
through mk_config().

		Parameters:		
		use_riak (bool) – Pass True if Riak is desired, otherwise it will be disabled in the
generated config parameters.

		is_sync (bool) – Pass True if synchronous Riak and Redis clients are desired,
otherwise asynchronous ones will be built. This only applies to clients
built by this helper, not those built by other objects using configs
from this helper.

		
get_riak_manager(config=None)

		Build and return a Riak manager.

		Parameters:		config (dict) – Riak manager config. (Not a complete worker config.) If None,
the one used by mk_config() will be used.

		Returns:		A RiakManager or
TxRiakManager, depending on the
value of is_sync.

		
record_load_and_store(riak_manager, loads, stores)

		Patch a Riak manager to capture load and store operations.

		Parameters:		
		riak_manager – The manager object to patch.

		loads (list) – A list to append the keys of loaded objects to.

		stores (list) – A list to append the keys of stored objects to.

		
get_redis_manager(config=None)

		Build and return a Redis manager.

This will be backed by an in-memory fake unless the
VUMITEST_REDIS_DB environment variable is set.

		Parameters:		config (dict) – Redis manager config. (Not a complete worker config.) If None,
the one used by mk_config() will be used.

		Returns:		A RedisManager or
TxRedisManager, depending on
the value of is_sync.

		
mk_config(config)

		Return a copy of config with the riak_manager and
redis_manager fields overridden.

All configs for things that create Riak or Redis clients should be
passed through this method.

Application worker test helpers

		
class vumi.application.tests.helpers.ApplicationHelper(application_class, use_riak=False, **msg_helper_args)

		Bases: object

Test helper for application workers.

This helper construct and wraps several lower-level helpers and provides
higher-level functionality for app worker tests.

		Parameters:		
		application_class – The worker class for the application being tested.

		use_riak (bool) – Set to True if the test requires Riak. This is passed to the
underlying PersistenceHelper.

		**msg_helper_args – All other keyword params are passed to the underlying
MessageHelper.

		
get_application(config, cls=None, start=True)

		Get an instance of a worker class.

		Parameters:		
		config – Config dict.

		cls – The Application class to instantiate.
Defaults to application_class

		start – True to start the application (default), False otherwise.

Some default config values are helpfully provided in the
interests of reducing boilerplate:

		transport_name defaults to self.transport_name

		
vumi.application.tests.helpers.find_nodejs_or_skip_test(worker_class)

		Find the node.js executable by checking the VUMI_TEST_NODE_PATH envvar
and falling back to the provided worker’s own detection method. If no
executable is found, SkipTest is raised.

Transport worker test helpers

		
class vumi.transports.tests.helpers.TransportHelper(transport_class, use_riak=False, **msg_helper_args)

		Bases: object

Test helper for transport workers.

This helper construct and wraps several lower-level helpers and provides
higher-level functionality for transport tests.

		Parameters:		
		transport_class – The worker class for the transport being tested.

		use_riak (bool) – Set to True if the test requires Riak. This is passed to the
underlying PersistenceHelper.

		**msg_helper_args – All other keyword params are passed to the underlying
MessageHelper.

		
get_transport(config, cls=None, start=True)

		Get an instance of a transport class.

		Parameters:		
		config – Config dict.

		cls – The transport class to instantiate.
Defaults to transport_class

		start – True to start the transport (default), False otherwise.

Some default config values are helpfully provided in the
interests of reducing boilerplate:

		transport_name defaults to self.transport_name

		
get_dispatched_failures(connector_name=None)

		Get failures dispatched by a transport.

		Parameters:		connector_name (str) – Connector name. If None, the default connector name for the
helper instance will be used.

		Returns:		A list of FailureMessage
instances.

		
exception vumi.transports.httprpc.tests.helpers.HttpRpcTransportHelperError

		Bases: vumi.errors.VumiError

Error raised when the HttpRpcTransportHelper encouters an error.

		
class vumi.transports.httprpc.tests.helpers.HttpRpcTransportHelper(transport_class, use_riak=False, request_defaults=None, **msg_helper_args)

		Bases: object

Test helper for subclasses of
HttpRpcTransport.

Adds support for making HTTP requests to the HTTP RPC transport to the
base TransportHelper.

		Parameters:		request_defaults (dict) – Default URL parameters for HTTP requests.

Other parameters are the same as for
TransportHelper.

		
mk_request_raw(suffix='', params=None, data=None, method='GET')

		Make an HTTP request, ignoring this helper’s request_defaults.

		Parameters:		
		suffix (str) – Suffix to add to the transport’s URL.

		params (dict) – A dictionary of URL parameters to append to the URL
as a query string or None for no URL parameters.

		data (str) – Request body or None for no request body.

		method (str) – HTTP method to use for the request.

		Raises HttpRpcTransportHelperError:

		 		When invoked before calling get_transport().

		
mk_request(_suffix='', _data=None, _method='GET', **kw)

		Make an HTTP request.

		Parameters:		
		_suffix (str) – Suffix to add to the transport’s URL.

		_data (str) – Request body or None for no request body.

		_method (str) – HTTP method to use for the request.

		**kw – URL query string parameters.

		Raises HttpRpcTransportHelperError:

		 		When invoked before calling get_transport().

The _ prefixes on the function parameter names are to
make accidental clashes with URL query parameter names less
likely.

Dispatcher worker test helpers

		
class vumi.dispatchers.tests.helpers.DispatcherHelper(dispatcher_class, use_riak=False, **msg_helper_args)

		Bases: object

Test helper for dispatcher workers.

This helper construct and wraps several lower-level helpers and provides
higher-level functionality for dispatcher tests.

		Parameters:		
		dispatcher_class – The worker class for the dispatcher being tested.

		use_riak (bool) – Set to True if the test requires Riak. This is passed to the
underlying PersistenceHelper.

		**msg_helper_args – All other keyword params are passed to the underlying
MessageHelper.

		
get_dispatcher(config, cls=None, start=True)

		Get an instance of a dispatcher class.

		Parameters:		
		config (dict) – Config dict.

		cls – The transport class to instantiate. Defaults to
dispatcher_class

		start (bool) – True to start the dispatcher (default), False otherwise.

		
get_connector_helper(connector_name)

		Construct a DispatcherConnectorHelper for the provided
connector_name.

		
class vumi.dispatchers.tests.helpers.DispatcherConnectorHelper(dispatcher_helper, connector_name)

		Bases: object

Subset of WorkerHelper and
MessageDispatchHelper functionality for a
specific connector. This should only be created with
DispatcherHelper.get_connector_helper().

 © Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		
 modules |

 		Vumi 0.5.34 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

installation.html

 Navigation

 		
 index

 		
 modules |

 		Vumi 0.5.34 documentation »

Installing Vumi with VirtualBox and Vagrant

The easiest way to try out Vumi is by using
VirtualBox [http://www.virtualbox.org] and Vagrant [http://www.vagrantup.com]:

		Install VirtualBox [http://www.virtualbox.org]

		Install Vagrant [http://www.vagrantup.com], make sure you follow the OS specific instructions [http://vagrantup.com/v1/docs/getting-started/index.html].

		Clone Vumi with git clone https://github.com/praekelt/vumi.git

		Execute cd vumi

		
		Execute vagrant up, this will take some time to complete as it:

		
		Downloads a 480MB Ubuntu 10.04 server VM

		Downloads ~ 40MB worth of Python packages

		Downloads ~ 100MB worth of packages with apt-get

		Shell into the machine via vagrant ssh, you’ll find the Vumi installation in /var/praekelt/vumi.

		Follow the instructions at Forwarding SMSs from an SMPP bind to a URL to setup your first Vumi application.

Note

Ubuntu 10.04 only provides version 1.3.5 of RubyGems while
Vagrant requires version 1.3.6. You’ll need to get an upstream
version or install from source as per the OS specific
instructions [http://vagrantup.com/v1/docs/getting-started/index.html].

Note

Ubuntu doesn’t put vagrant on your $PATH, you’ll need to
manually symlink it with sudo ln -s /var/lib/gems/1.8/bin/vagrant
/usr/bin/

Installation on a Debian/Ubuntu system

If you don’t have/want Vagrant for some reason (or perhaps are doing a production deployment), you
can follow the instructions below:

		Install protobuf-compiler python-dev build-essential python-pip libffi-dev. You can do this
with apt-get or aptitude.

		If you’re installing vumi as an unprivileged user, run the command pip install –user vumi.
Alternatively run pip install vumi to do a system/virtualenv install (as is appropriate
in your environment).

These instructions were tested on an Ubuntu 12.04 instance as well as a Debian 7 instance.

 © Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

_static/up.png

_static/up-pressed.png

getting-started.html

 Navigation

 		
 index

 		
 modules |

 		Vumi 0.5.34 documentation »

First steps with Vumi

The simplest Vumi system consists of a transport worker and an
application worker.

A transport worker is responsible for sending messages to and
receiving messages from users in the big wide world. For this example
we’ll be using a very simple transport that interacts with a user over
telnet. Other transport mechanisms Vumi supports include SMPP, XMPP,
Twitter, IRC, HTTP and a variety of mobile network aggregator specific
messaging protocols.

The application worker processes messages from a transport and sends
replies – it holds the application logic. Our application worker will
simply echo messages it receives back to the user than sent them. More
complicated demonstration application workers are available in
vumi.demos.

It is also possible for application logic to be kept external to Vumi
and to communicate with Vumi via its HTTP relay application (see
vumi.application.http_relay).

Bigger systems will include multiple transport workers and application
workers and also failure workers and dispatchers but we will
ignore these for the moment.

Vumi workers communicate over RabbitMQ so first ensure that the
RabbitMQ server is installed and running. Next setup RabbitMQ for
Vumi using:

sudo ./utils/rabbitmq.setup.sh

from your clone of the Vumi repository. You should now be ready to
start the Vumi workers.

Open a terminal window and start the transport worker by running:

twistd -n --pidfile=telnettransport.pid vumi_worker --worker-class vumi.transports.telnet.TelnetServerTransport --set-option=transport_name:telnet --set-option=telnet_port:9010

If all is well, open a second terminal window and start the application worker:

twistd -n --pidfile=echoworker.pid vumi_worker --worker-class vumi.demos.words.EchoWorker --set-option=transport_name:telnet

Your first Vumi setup should now be running. You can test it by
opening a third window and connecting with a telnet client:

telnet localhost 9010

Lines you type should be echoed back to you.

 © Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/comment-close.png

_static/comment-bright.png

_static/minus.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/plus.png

_images/images/tikz/simple-dispatcher-example.png
my_application

intro/scaleconf02.html

 Navigation

 		
 index

 		
 modules |

 		Vumi 0.5.34 documentation »

ScaleConf Workshop - Getting Set Up

Note

These instructions were written for the first Vumi workshop on the 21st
of April 2013, right after the ScaleConf [http://www.scaleconf.org/] conference in Cape Town.

Spotted an error? Please feel free to contribute to the documentation [https://github.com/praekelt/vumi/].

Installation

If you’re feeling particularly brave you can by all means set up Vumi from
scratch on your local machine by cloning the GitHub repository [https://github.com/praekelt/vumi/] and installing
all the necessary packages.

However we would strongly recommend you use the VirtualBox [http://www.virtualbox.org/] image that’s
been ready made for the workshop in combination with Vagrant [http://www.vagrantup.com/].
It has all of the necessary dependencies already installed for you on an
Ubuntu Precise machine image.

Using Vagrant & VirtualBox

Ensure you have the latest versions of both Vagrant and VirtualBox installed
before starting.

To add and start the vumi dev box do the following:

$ git clone git://github.com/praekelt/vumi.git
$ cd vumi
$ vagrant box add vumi ~/path/to/the/vumi-dev.box
$ vagrant up

When this completes you’ll have a virtual machine running Ubuntu Precise 64
with the Vumi [https://github.com/praekelt/vumi/] repository mounted at /var/praekelt/vumi

Log in to your machine with:

$ vagrant ssh

Setting up your Transport

Now things will only get interesting once you can start interacting with them
via your phone. Let’s get the SMS and USSD transports set up:

$ cd /var/praekelt/vumi/
$ virtualenv ve
$ source ve/bin/activate
$ pip install -r requirements.pip

Grab a coffee while you’re waiting for this to complete, it can take a while.

You should by now have received your username, password and tokens
for https://go.vumi.org/ which you are going to federate with. This will
allow you to receive USSD traffic right on your machine.

Complete the config file below with the details provided and save it
in a file called ussd_transport.yaml:

transport_name: ussd_transport
account_key: <your account key>
access_token: <your acccess token>
conversation_key: <your conversation key>

middleware:
 - logging_mw: vumi.middleware.logging.LoggingMiddleware

logging_mw:
 log_level: debug

Next save the following bit in a file called supervisord.conf in the
etc folder:

[unix_http_server]
file=/tmp/supervisor-vumi.sock ; (the path to the socket file)

[supervisord]
logfile=./logs/supervisord.log ; (main log file;default $CWD/supervisord.log)
logfile_maxbytes=50MB ; (max main logfile bytes b4 rotation;default 50MB)
logfile_backups=10 ; (num of main logfile rotation backups;default 10)
loglevel=info ; (log level;default info; others: debug,warn,trace)
pidfile=./tmp/pids/supervisord.pid ; (supervisord pidfile;default supervisord.pid)
nodaemon=false ; (start in foreground if true;default false)
minfds=1024 ; (min. avail startup file descriptors;default 1024)
minprocs=200 ; (min. avail process descriptors;default 200)

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=unix:///tmp/supervisor-vumi.sock ; use an http:// url to specify an inet socket

[program:ussd_transport]
command=twistd -n
 --pidfile=./tmp/pids/%(program_name)s.pid
 vumi_worker
 --worker-class=vumi.transports.vumi_bridge.GoConversationTransport
 --config=./ussd_transport.yaml
stdout_logfile=./logs/%(program_name)s_%(process_num)s.log
stderr_logfile=./logs/%(program_name)s_%(process_num)s.err

[program:hangman]
command=twistd -n
 --pidfile=./tmp/pids/%(program_name)s.pid
 vumi_worker
 --worker-class=vumi.demos.hangman.HangmanWorker
 --set-option=worker_name:hangman_worker
 --set-option=transport_name:ussd_transport
 --set-option=random_word_url:http://randomword.setgetgo.com/get.php
stdout_logfile=./logs/%(program_name)s_%(process_num)s.log
stderr_logfile=./logs/%(program_name)s_%(process_num)s.err

When that’s done we can start things up:

$ supervisord -c etc/supervisord.conf
$ supervisorctl -c etc/supervisord.conf tail -f ussd_transport

Now dial the number that’s associated with your conversation and you
will be prompted with a game of hangman running from your local machine.

Writing Applications

In the next section we’ll be getting into
application development, starting with Python and later moving on to
Javascript.

 © Copyright 2011, Praekelt Foundation.
 Last updated on Dec 07, 2015.
 Created using Sphinx 1.3.1.

_images/images/tikz/vumi-simple-setup.png
outhound
failure

outbound

i

inbound

Application Workers

intro/scaleconf03.html

 Navigation

 		
 index

 		
 modules |

 		Vumi 0.5.34 documentation »

ScaleConf Workshop - Writing an Application

In this section we’ll be writing a minimal Twitter clone in Python using SMS
as the communication channel. @imsickofmaps [https://twitter.com/imsickofmaps] suggested we call
it “smitter”.

Setting up the SMS Transport

First, to use SMS we need to setup the SMS transport. This is the same
procedure as setting up the USSD transport. Use this as the template and
save it in a file called “sms_transport.yaml” (note that we’re using
a different value for ‘transport_name’):

transport_name: sms_transport
account_key: <your account key>
access_token: <your acccess token>
conversation_key: <your conversation key>

middleware:
 - logging_mw: vumi.middleware.logging.LoggingMiddleware

logging_mw:
 log_level: debug

Add the following bits to the “supervisord.conf” file created earlier:

[program:sms_transport]
command=twistd -n
 --pidfile=./tmp/pids/%(program_name)s.pid
 vumi_worker
 --worker-class=vumi.transports.vumi_bridge.GoConversationTransport
 --config=./sms_transport.yaml
stdout_logfile=./logs/%(program_name)s_%(process_num)s.log
stderr_logfile=./logs/%(program_name)s_%(process_num)s.err

[program:smitter]
command=twistd -n
 --pidfile=./tmp/pids/%(program_name)s.pid
 vumi_worker
 --worker-class=scaleconf.SmitterApplication
 --set-option=worker_name:smitter_worker
 --set-option=transport_name:sms_transport
stdout_logfile=./logs/%(program_name)s_%(process_num)s.log
stderr_logfile=./logs/%(program_name)s_%(process_num)s.err

Writing your application

Create a file called scaleconf.py put in the following code and replace
the place holder text with your South African phone number as a string:

from vumi.application import ApplicationWorker

class SmitterApplication(ApplicationWorker):

 def setup_application(self):
 return self.send_to("27.....", 'hi there!')

 def consume_user_message(self, message):
 return self.reply_to(message, 'thanks!')

Tell supervisord to add the new processes:

$ supervisorctl -c etc/supervisord.conf update

Within a few seconds you should receive an SMS from your application.
If you reply to this number then you’ll receive “thanks” back.

Making things more interesting

What we want to do is the following:

		People join by SMSing ‘+’ to your SMS longcode.

		People leave by SMSing in ‘-‘ to your SMS longcode.

		Anything else i